# Bush 631-603: Quantitative Methods Lecture 6 (02.21.2023): Prediction vol. I

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Spring 2023

### What is today's plan?

- Why predictions?
- Programming basics loops, conditional statements.
- Making predictions with data: elections, FP expenses.
- Using dates data.
- R Tech: mastering R Markdown
- R work: loops, if{}, if{}else{}, as.date(), line plots.
- Programming Task: Working with R

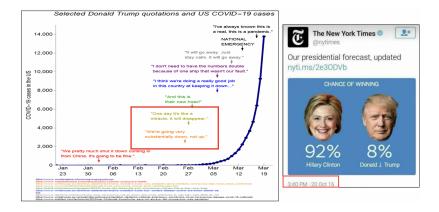
## Predicting with data

Social science research:

- Establish causality.
- The role of measurement.
- Predictions:
  - Support for causal statements.
  - Generate accurate predictions about potential outcomes.

## Not the best... predictions!

#### Oh no...



#### Some more gems

#### Daily Mail - December 5, 2000



## Some more gems

Well. . .



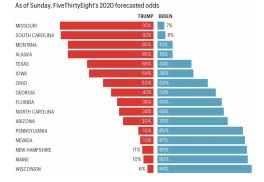
## Some groundwork

#### LOOPS

Useful to repeat the same operation multiple times.

How likely candidates are to win key states

Efficient analysis tool.



## Loops in ${\sf R}$

Run similar code chunk repeatedly.



- Elements of loop:
  - i: counter (change as you like).
  - X: Vector of ordered values for the counter.
  - expression: set of expressions to run repeatedly.
  - {}: curly braces define the beginning and end of a loop.

## Loops in R

```
weeks <- c(1,2,3,4,5)
n <- length(weeks)
t <- rep(NA,n)

# loop counter
for (i in 1:n){
    t[i] <- weeks[i] * 2
    cat("I completed Swirl HW number", weeks[i], "in",
        t[i], "minutes", "\n")
}</pre>
```

## I completed Swirl HW number 1 in 2 minutes
## I completed Swirl HW number 2 in 4 minutes
## I completed Swirl HW number 3 in 6 minutes
## I completed Swirl HW number 4 in 8 minutes
## I completed Swirl HW number 5 in 10 minutes

#### Conditional statements

Implement code chunks based on logical expressions.

#### If statements

Syntax: if (x = a condition) {set of commands}

Run command(s) only if value if X is TRUE

```
weather <- "rain"
if (weather == "rain"){
  cat("I should take my umbrella")
}</pre>
```

## I should take my umbrella

### Flexible if statements

#### If Else statements

Using if(){} else {}

```
weather <- "sunny"
if (weather == "rain"){
  cat("I should take my umbrella")
} else {
  cat("I should wear my Aggie hat")
}</pre>
```

## I should wear my Aggie hat

#### Complex conditional statements

Join conditional statements into a loop.

```
days <- 1:7
n <- length(days)
for (i in 1:n){
    x <- days[i]
    r <- x ½ 2
    if (r == 0){
        cat("Day", x, "is even and I need my umbrella \n")
    } else {
        cat("Day", x, "is odd and I need my Aggie cap \n")
    }
}</pre>
```

## Day 1 is odd and I need my Aggie cap
## Day 2 is even and I need my umbrella
## Day 3 is odd and I need my Aggie cap
## Day 4 is even and I need my umbrella
## Day 5 is odd and I need my Aggie cap
## Day 6 is even and I need my umbrella
## Day 7 is odd and I need my Aggie cap

#### Conditional statements

Integrate conditional statements within a conditional statement.

```
output$tab <- function(){</pre>
## Season 2016: Tables
   if(input$year == 2016){
     data2016 <- mydata %>%
        filter(season == 2016)
   if (input$data == "QBR") {
     dat_tab <- data2016 %>%
       filter(QBR rank < 16) %>%
       select(First, Last, QBR)
     dat tab %>%
       knitr::kable("html") %>%
       kable_styling(font_size = 15, "striped", full_width = F, position = "center") %>%
       add header above(c("QBR: Top 15" = 3)) %>%
       scroll_box(height = "250px", width = "450px")
     if (input$data == "EPA") {
       dat tab <- data2016 %>%
         filter(EPA_rank < 16) %>%
          select(First, Last, EPA play) %>%
          arrange(-EPA play)
```

## Conditional statements

#### Caution:

- if(){} else{} are complex.
- Double check the curly braces for each statement.
- Use the automatic indentation.
- 'Space-out' your code.
- ► Add comments (using #) to clearly mark each step.

## Predictions

- Awesome research tool...with the right design.
- Predict: elections, economic trends, behavior, Superbowl winners, etc.

#### Elections winner



## US electoral system

Electoral college

Plurality of votes in a state: "Winner-take-all"



## Election predictions

Measurement problem:

- National vote vs. electoral votes.
- Bush Gore (2000).
- Clinton Trump (2016).

Electoral vote:

- Number of electors does not align with number of voters per state.
- Votes are "unaccounted".
- A Prediction problem:
  - Accurate forecast of **each state** winner.

## Polls and election predictions

Data: 2016 elections (polls)

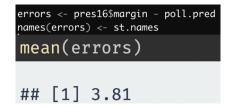
| head(polls16) |    |   |       |     |         |          |     |        |            |          |  |
|---------------|----|---|-------|-----|---------|----------|-----|--------|------------|----------|--|
|               |    |   |       |     |         |          |     |        |            |          |  |
|               | ## |   | state | n   | niddate | e daysle | eft |        | 1          | oollster |  |
|               | ## | 1 | AK    | 8   | 3/11/16 | ;        | 89  | Lake   | Research I | Partners |  |
|               | ## | 2 | AK    | 8   | 3/20/16 | 5        | 80  |        | Surve      | eyMonkey |  |
|               | ## | 3 | AK    | 10  | 0/20/16 | ò        | 19  |        |            | YouGov   |  |
|               | ## | 4 | AK    | 10  | 0/26/16 | 5        | 13  | Google | Consumer   | Surveys  |  |
|               | ## | 5 | AK    | 9   | 9/30/16 | 5        | 39  | Google | Consumer   | Surveys  |  |
|               | ## | 6 | AK    | 10  | 0/12/16 | 5        | 27  | Google | Consumer   | Surveys  |  |
|               | ## |   | clint | on  | trump   | margin   |     |        |            |          |  |
|               | ## | 1 | 30.   | . 0 | 38.0    | 8.00     |     |        |            |          |  |
|               | ## | 2 | 31    | . 0 | 38.0    | 7.00     |     |        |            |          |  |
|               | ## | 3 | 37.   | . 4 | 37.7    | 0.30     |     |        |            |          |  |
|               | ## | 4 | 38.   | . 0 | 39.0    | 1.00     |     |        |            |          |  |
|               | ## | 5 | 47.   | . 5 | 36.7    | -10.76   |     |        |            |          |  |
|               | ## | 6 | 34.   | . 6 | 30.0    | -4.62    |     |        |            |          |  |

## Poll prediction by states (using R loop)

```
poll.pred <- rep(NA, 51) # place holder</pre>
# get list of unique state names to iterate over
st.names <- unique(polls16$state)</pre>
# add labels to holder
names(poll.pred) <- st.names</pre>
for (i in 1:51) {
  state.data <- subset(polls16, subset = (state == st.names[i]))</pre>
  latest <- state.data$daysleft == min(state.data$daysleft)</pre>
  poll.pred[i] <- mean(state.data$margin[latest])</pre>
head(poll.pred)
##
       AK
              AL
                    AR AZ
                                     CA
   14.73 29.72 20.02 2.50 -23.00 -7.05
##
```

## Errors in polling

Prediction error = actual outcome - predicted outcome



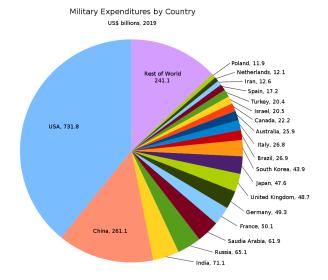
Root mean-square-error (RMSE): average magnitude of prediction error

Prediction of binary outcome variable  $\rightarrow$  classification problem Wrong prediction  $\rightarrow$  misclassification:

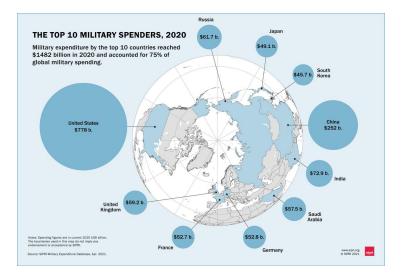
- 1. true positive: predict Trump wins when he actually wins.
- 2. false positive: predict Trump wins when he actually loses.
- 3. true negative: predict Trump loses when he actually loses.
- 4. false negative: predict Trump loses when he actually wins.

2016 elections: misclassification rate was high: 9.8% (5/51 states).

### Military spending across the globe



#### Military spending across the globe



## Predicting military spending

Our data:

- 157 Countries
- Time frame: 1999-2019
- Measure: military spending as proportion of total gov't spending.

Why this measure?

- Reflect state's preferences.
- ► Trade-off: *Guns vs. Butter*.

Our predictions:

- Using 1999-2019 data to predict 2020 levels.
- Test predictions with actual data.

#### Military spending data

dim(mil\_exp)

## [1] 157 25

head(mil\_exp, n=8)

## # A tibble: 8 x 25 Country Group1 Subgr~1 `1999` 2000` 2001` 2002` 2003` 2004` 2005` 2 ## <chr> <chr> <chr> <dbl> <dbl > <db > <d ## ## 1 Algeria Africa North ~ 0.118 0.120 0.122 0.108 0.101 0.107 0.105 0. ## 2 Libya Africa North ~ 0.115 0.103 0.0630 0.0524 0.0484 0.0490 0.0502 0. ## 3 Morocco Africa North ~ 0.145 0.0898 0.145 0.125 0.134 0.123 0.105 0. ## 4 Tunisia Africa North ~ 0.0618 0.0614 0.0605 0.0590 0.0603 0.0591 0.0601 0. ## 5 Angola Africa Sub-Sa~ 0.274 0.129 0.108 0.0919 0.109 0.116 0.139 0. ## 6 Benin Africa Sub-Sa~ 0.0452 0.0264 0.0232 0.0407 0.0473 0.0506 0.0482 0. ## 7 Botswa~ Africa Sub-Sa~ 0.0759 0.0817 0.0899 0.0900 0.0915 0.0848 0.0823 0. ## 8 Burkin~ Africa Sub-Sa~ 0.0576 0.0624 0.0588 0.0605 0.0610 0.0596 0.0594 0. ## # ... with 14 more variables: `2007` <dbl>, `2008` <dbl>, `2009` <dbl>, ## # <sup>2010</sup> <dbl>, <sup>2011</sup> <dbl>, <sup>2012</sup> <dbl>, <sup>2013</sup> <dbl>, <sup>2014</sup> <dbl>, ## # <sup>2</sup>2015<sup> </sup><dbl>, <sup>2</sup>2016<sup> </sup><dbl>, <sup>2</sup>2017<sup> </sup><dbl>, <sup>2</sup>2018<sup> </sup><dbl>, <sup>2</sup>2019<sup> </sup><dbl>, ## # 2020 <dbl>, and abbreviated variable name 1: Subgroup1

## Reshaping the data

- Use the gather() function
- Increase the data size.
- Cross section  $\rightarrow$  Panel (TSCS Data).
- Each case (country for us) has multiple observations (rows).

| countries | population_in_million                   | gdp_percapita |    |      | countries | time                  | value |
|-----------|-----------------------------------------|---------------|----|------|-----------|-----------------------|-------|
| A         | 100                                     | 2000          | то |      | А         | population_in_million | 100   |
| В         | 200                                     | 7000          |    |      | В         | population_in_million | 200   |
| С         | 120                                     | 15000         |    | Long | С         | population_in_million | 120   |
|           |                                         |               |    | 8    | А         | gdp_percapita         | 2000  |
|           | * · · · · · · · · · · · · · · · · · · · |               |    |      | В         | gdp_percapita         | 7000  |
|           | wide                                    |               |    | 1    | С         | gdp_percapita         | 15000 |
|           | what                                    |               |    |      |           |                       |       |
|           |                                         |               |    |      |           |                       |       |

#### Reshaping the data

```
gather() function: long-form data.
```

```
spend_long <- mil_exp2 %>%
gather(year, exp, '1999':'2019',-Country, -Group1, -Subgroup1) %>%
arrange(Country)
```

```
head(spend_long, n=9)
```

```
## # A tibble: 9 \times 5
##
    Country Group1
                               Subgroup1 year
                                                  exp
##
    <chr>
          <chr>
                               <chr> <chr> <chr> <dbl>
## 1 Afghanistan Asia & Oceania South Asia 1999 NA
## 2 Afghanistan Asia & Oceania South Asia 2000 NA
## 3 Afghanistan Asia & Oceania South Asia 2001
                                              NA
## 4 Afghanistan Asia & Oceania South Asia 2002
                                              NA
## 5 Afghanistan Asia & Oceania South Asia 2003 NA
## 6 Afghanistan Asia & Oceania South Asia 2004 0.161
## 7 Afghanistan Asia & Oceania South Asia 2005
                                              0.127
## 8 Afghanistan Asia & Oceania South Asia 2006 0.104
## 9 Afghanistan Asia & Oceania South Asia 2007 0.119
```

## Predicting spending

Predict 2020 spending  $\rightarrow$  mean of spending (1999-2019) Use loop to calculate means for all countries

```
## loop
pred.mean <- rep(NA,157)
c.names <- unique(spend_long$Country)
names(pred.mean) <- as.character(c.names)
for (i in 1:157){
    c.dat <- subset(spend_long, subset = (Country == c.names[i]))
    pred.mean[i] <- mean(c.dat$exp, na.rm = T)
}</pre>
```

## Predicting spending for 2020

|                |                    |                     |                  |           | pred.mean     |
|----------------|--------------------|---------------------|------------------|-----------|---------------|
| Armenia        | Argentina          | Angola              | Algeria          | Albania   | Afghanistan   |
| 15.727         | 2.865              | 11.421              | 11.679           | 4.804     | 7.694         |
| Belarus        | Bangladesh         | Bahrain             | Azerbai jan      | Austria   | Australia     |
| 30.557         | 10.249             | 13.654              | 11.593           | 1.622     | 5.117         |
| Botswana       | Bosnia-Herzegovina | Bolivia             | Benin            | Belize    | Belgium       |
| 7.708          | 3.024              | 5.312               | 4.313            | 3.482     | 2.104         |
| Cambodia       | Burundi            | Burkina Faso        | Bulgaria         | Brunei    | Brazil        |
| 9.069          | 12.387             | 6.087               | 5.727            | 8.537     | 3.955         |
| Chile          | Chad               | entral African Rep. | Cape Verde C     | Canada    | Cameroon      |
| 10.101         | 16.417             | 10.904              | 1.846            | 2.898     | 7.432         |
| Côte d'Ivoire  | Costa Rica         | Congo, Republic of  | Congo, Dem. Rep. | Colombia  | China         |
| 7.180          | 0.000              | 8.326               | 9.083            | 11.338    | 8.148         |
| Dominican Rep. | Djibouti           | Denmark             | Czechia          | Cyprus    | Croatia       |
| 4.516          | 15.135             | 2.517               | 3.230            | 4.972     | 4.204         |
| eSwatini       | Estonia            | Equatorial Guinea   | El Salvador      | Egypt     | Ecuador       |
| 6.041          | 4.614              | 5.625               | 4.408            | 6.539     | 7.901         |
| Gambia         | Gabon              | France              | Finland          | Fiji      | Ethiopia      |
| 3.736          | 7.089              | 3.599               | 2.705            | 5.670     | 10.330        |
| Guinea         | Guatemala          | Greece              | Ghana            | Germany   | Georgia       |
| 11.728         | 3.740              | 5.687               | 2.040            | 2.686     | 10.935        |
| Iceland        | Hungary            | Honduras            | Haiti            | Guyana    | Guinea-Bissau |
| 0.000          | 2.512              | 4.366               | 0.001            | 4.377     | 9.553         |
| Israel         | Ireland            | Iraq                | Iran             | Indonesia | India         |
| 14.203         | 1.472              | 6.366               | 14.319           | 4.122     | 9.693         |
| Kenya          | Kazakhstan         | Jordan              | Japan            | Jamaica   | Italy         |
| 6.172          | 4.723              | 15.356              | 2.560            | 2.672     | 3.099         |
| Lebanon        | Latvia             | Laos                | Kyrgyzstan       | Kuwait    | Korea, South  |
| 14.164         | 3.728              | 2.179               | 4.839            | 12.222    | 12.765        |

## Good prediction?

Checking for errors:

```
# Calculate errors & assign country names
errors <- mil_exp$`2020` - pred.mean
names(errors) <- c.names</pre>
```

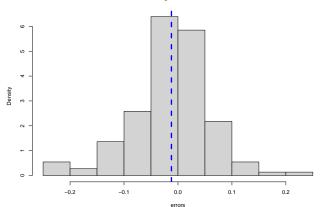
```
# Average error
mean(errors, na.rm = T)
```

```
## [1] -0.01210775
# RMSE
sqrt(mean(errors^2, na.rm = T))
```

## [1] 0.07380063

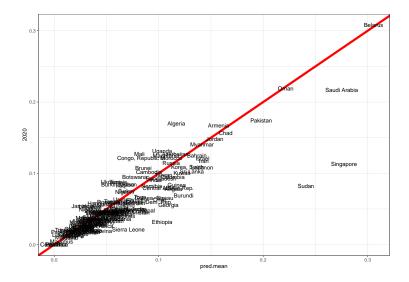
### Prediction errors

How far off are we?



Histogram of errors

## Accuracy of predictions



#### Find outlier predictions

Identify where we were off...

# Errors distribution
summary(n.dat\$error)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## -0.164364 -0.017092 -0.004715 -0.008734 0.000374 0.053107 10 # Create variable for large outliers n.dat\$large.inc <- NA n.dat\$large.inc[n.dat\$error > 0.01] <- "Much More"</pre> n.dat\$large.inc[n.dat\$error < -0.01] <- "Much Less" # Create subset of outliers: less than average n.dat2 <- n.dat %>% filter(large.inc == "Much Less") %>% mutate(error = error \* 100) %>% select(Group1, error) %>% arrange(desc(error))

tail(n.dat2, n=7)

| ## |              | Group1         | error      |
|----|--------------|----------------|------------|
| ## | Sierra Leone | Africa         | -4.945523  |
| ## | Georgia      | Europe         | -5.375066  |
| ## | Burundi      | Africa         | -5.521676  |
| ## | Saudi Arabia | Middle East    | -5.806989  |
| ## | Ethiopia     | Africa         | -7.119952  |
| ## | Sudan        | Africa         | -15.832405 |
| ## | Singapore    | Asia & Oceania | -16.436356 |

#### Time series and predicted value

Focus on big-5 spenders

Format data to long-form

Create clear measure for expenditure

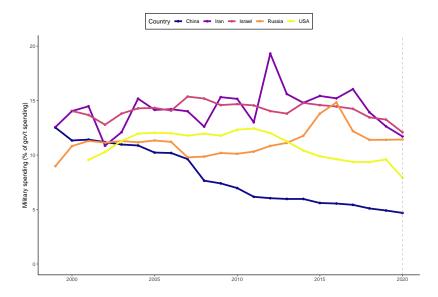
## Working with dates

Working with dates:

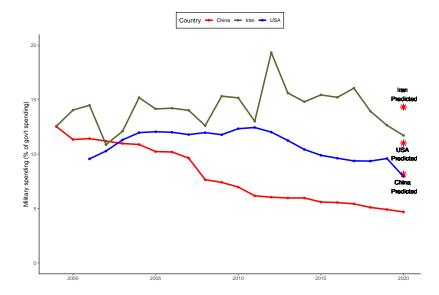
- ▶ Package → library(lubridate)
- Define variables as dates and choose format
- We can calculate number of days between date variables

```
# Working with dates
arrive <- as.Date("2015-07-01")
today <- as.Date("2023-02-21")
# How long have I been in the US?
today - arrive
## Time difference of 2792 days
# Define dates in our expenditures data
dat3$year.f <- as.Date(dat3$year, format = "%Y")
dat3$year.f2 <- year(dat3$year.f)</pre>
```

## Spending over time



# Spending over time (and predicted 2020 - the 'big 3')



# R Tech

#### Mastering R Markdown

- Use template.
- Code: 'migrate' from R script.
- Adding code chunks blocks.
- Text: captions, lists, bolded...
- Document organization vertical spaces

# US Military Aid

- Approximately \$11-12 Billion per year.
- ▶ FP tool with various goals:
  - quid-pro-quo compliance with target government.
  - Augment US national security.
  - Require aid target cooperation.
- Outcomes? Not too promising...
  - Reduce cooperation (2011).
  - Reduce terrorism under certain conditions (2014).
  - Limited in lowering civil conflict (2018).
- Great data resource: ForeignAssistance.gov (Link)

#### Aid data

#### ▶ US Aid (1990-2006)

# Explore Military aid data
dim(mil\_aid2)

## [1] 2643 34

summary(mil\_aid2\$militaryaid)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.00 0.00 0.20 34.49 1.30 3365.70 3

## Predicting US Military Aid

##

115,82500

81.24375

- ▶ Predict 2006 levels  $\rightarrow$  mean of aid (1990-2005)
- Use loop to calculate means for all countries

```
## Loop procedure
pred.aid <- rep(NA, 168)
c.names <- unique(mil_aid2$country)</pre>
names(pred.aid) <- as.character(c.names)</pre>
for (i in 1:168){
  c.dat <- subset(mil_aid2, subset = (country == c.names[i]))</pre>
  pred.aid[i] <- mean(c.dat$militaryaid, na.rm = T)</pre>
}
pred.aid[pred.aid > 80]
##
        Greece
                     Turkey
                                    Iraq
                                                Egypt
                                                            Jordan
##
     196.29375
                  309.69375
                              179.95625 1595.04999
                                                        154.68125
                                                                    2516.30624
## Afghanistan
                 Pakistan
```

Israel

# Predicting Aid

```
    Check our predictions
```

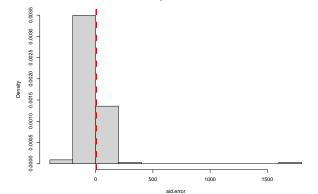
```
# Error vectors and plot
aid.error <- mil_aid3$militaryaid - pred.aid
names(aid.error) <- c.names
mean(aid.error, na.rm = T)</pre>
```

```
## [1] 5.719636
sqrt(mean(aid.error<sup>2</sup>, na.rm = T))
```

## [1] 139.2933

# Plot errors (outliers?)

hist(aid.error, freq = FALSE)
abline(v = mean(aid.error, na.rm = T), lty = "dashed", col = "red", lwd = 5)

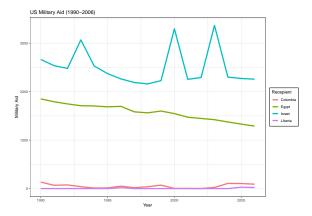


Histogram of aid.error

aid.error[aid.error > 1000]

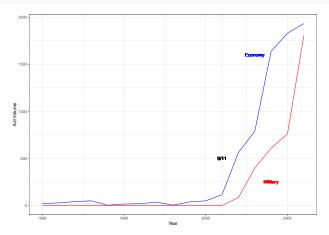
| ## | <na></na> | <na></na> | Afghanistan |
|----|-----------|-----------|-------------|
| ## | NA        | NA        | 1691.175    |

# US Military aid: Time trends



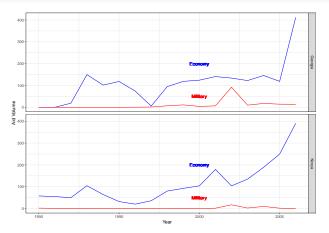
## Military and Economic aid: Afghanistan (1990-2006)

```
mil_aid %>%
filter(country == "Afghanistan") %>%
ggplot() +
geom_line(aes(year,economicaid), color = "blue") + xlab("Year") +
geom_line(aes(year,militaryaid), color = "red") + ylab("Aid Volume") +
geom_text(aes(x = 2003, y = 1600, label = "Economy"), color = "blue") +
geom_text(aes(x = 2004, y = 250, label = "Military"), color = "red") +
geom_text(aes(x = 2004, y = 250, label = "Military"), color = "lightgrey") +
geom_text(aes(x = 2001, y = 500, label = "9/1"), color = "black") + theme_bw()
```



#### Military and Econ aid: Always tracking??

```
mil_aid %>%
filter(country == "Georgia" | country == "Kenya") %>%
ggplot(aes(group = country)) +
geom_line(aes(year,economicaid), color = "blue") + xlab("Year") +
geom_line(aes(year,militaryaid), color = "red") + ylab("Aid Volume") +
geom_text(aes(x = 2000, y = 200, label = "Economy"), color = "blue") +
geom_text(aes(x = 2000, y = 50, label = "Military"), color = "red") +
facet_grid(country-.) + theme_bw()
```



# Military and Economic aid (1990-2006)

#### Checking for correlations

## type value
## 1 Military 33.08976
## 2 Economic 66.11048

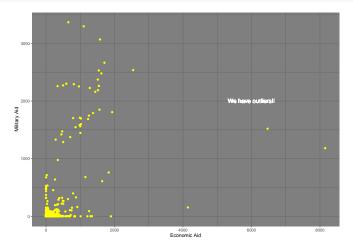
#### # Correlation

cor(mil\_aid\$militaryaid, mil\_aid\$economicaid, use = "complete.obs")

## [1] 0.5559843

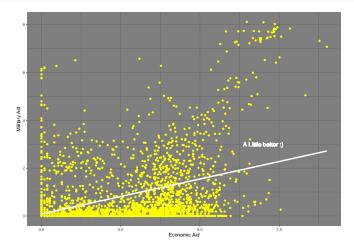
## Plotting correlation

```
ggplot(mil_aid, aes(x=economicaid, y=militaryaid)) +
geom_point(color = "yellow") +
xlab("Economic Aid") + ylab("Military Aid") +
geom_text(aes(x =6000, y = 2000, label = "We have outliers!!"), color = "white", size = 4.5) +
theme_dark()
```



## Plotting correlations: "Remove" outliers

```
ggplot(mil_aid, aes(x=logeconomicaid, y=logmilitaryaid)) +
geom_point(color = "yellow") +
geom_smooth(method = "ln", se = F, color = "white", size = 1.5) +
xlab("Economic Aid") + ylab("Military Aid") +
geom_text(aes(x =7, y = 3, label = "A Little better :)"), color = "white", size = 4.5) +
themme_dark()
```



# Wrapping up week 6

Summary:

- Predictions...
- Using data to find the 'best- guess' of some quantity.
- Repeated computations? Use Loops.
- Always check for prediction errors.
- Classification errors: false positive and false negative.
- Data over time
- US military aid data: predictions, errors and some insights