Bush 631-603: Quantitative Methods Lecture 2 (01.24.2023): Causality vol. I

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Spring 2023

What is today's plan?

- Causality and deriving cause-effect relationship.
- Research designs to assess causality.
- Randomized controlled experiments (RCTs).
- R Tech: create and save scripts, basic functionality.
- R work: more ways to learn of our data, sub-setting data, factor variables.

Causality

- Identify causes for outcomes of interest:
 - 1. Universal health care and better health status among poor.
 - 2. Drop in president approval during war.
- Establish causality:

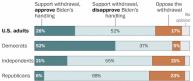
$\mathsf{Cause} \to \mathsf{Effect}$

Establish causality

2016 turnout: 59.2% of VEP 2020 turnout: 62% of VEP

• Candidate gender \rightarrow election turnout?

Experiments


- Test causal effects using hypothetical scenario.
- Some use actual setting (natural experiment).
- Candidate gender and public support? use an experiment...

Experiments

President party \rightarrow foreign policy?

Q: Which of these comes closest to your opinion regarding the withdrawal of all U.S. forces from Afghanistan?

Source: Aug. 29-Sept. 1, 2021, Washington Post-ABC News poll of 1,006 adults with an error margin of +/- 3.5 percentage points. Error margins larger among subgroups. MARIA AGULARATHE WASHINGTON POST

Experiments, how?

- Test causal effects using a *treatment*.
- Treatment(s) represents the proposed causal factor(s).
- Manipulate treatments assign different values.
- Measure and compare outcome across treatments.

Experiments in FP

Mattes and Weeks (2019)

Hawks – Doves and Foreign Policy Reconciliation

The design

Elements of experiment:

- Hypothetical scenario.
- Adversary: China.
- Important FP issue access to arctic.
- Outcome measured: approval of president's actions.
- Treatments:
 - Description of factors.
 - Vary between groups.

Background information:

"The year is 2027. The U.S. President is John Richards. President Richards took office in 2025 after serving in the U.S. Senate for six years."

The setting (all respondents):

- China: distrusted adversary.
- Tense relations.
- Specific issue access to arctic.

"One very tense issue is access to the Arctic. The Arctic contains up to 40 percent of the world's oil and gas resources and provides vital shipping routes between continents. In 2027, the U.S. and China both have a major military presence in the Arctic. Each country has thousands of troops in the area and holds frequent military exercises in the region."

The leader's type (variable name = hawk_t):

Hawk/Dove				
Hawk	Dove			
has a reputation for favoring military solutions over	has a reputation for favoring diplomatic solutions over			
diplomatic ones. He has repeatedly emphasized that	military ones. He has repeatedly emphasized that			
military force is essential to protecting American	military force is not the answer to protecting American			
national security. President Richards says that he will	national security. President Richards says that he			
not shy away from using force where necessary. He has	believes in diplomacy and negotiations and will use			
long said that "the only way to achieve peace is to be	military force only as a last resort. He has long said that			
ready for war."	"the only way to achieve peace is to act peacefully."			

President Richards and China:

"In his 2027 State of the Union speech, President Richards declares that getting China to cooperate is important for achieving U.S. foreign policy goals."

Policy choice (variable name = rapproche_t)

Policy Choice		
Conciliatory	Status Quo	
announces that he is sharply reducing the U.S.	announces that he is maintaining the current U.S.	
military presence in the Arctic. He is withdrawing a	military presence in the Arctic. He will continue to keep	
third of the U.S. forces currently in the Arctic and is	U.S. forces in the Arctic and will carry through with	
calling off planned military exercises in the region.	planned military exercises in the region.	

- Measuring outcomes:
 - 1. President approval (variable name = hddv1): rate on a 1-5 scale.
 - 2. Trust: level of international trust in other nations (yes/no).
 - 3. Internationalism: US involvement in world affairs (1-4 scale).
- Respondents' characteristics:
 - 1. Gender.
 - 2. Voted in 2016?

The experiment data

dim(mydata)

[1] 1199 32

head(mydata)

A tibble: 6 x 32 ## caseid hawk t party t rappr~1 succe~2 hawk intl trust voted16 pol <dbl> <dbl+l> <db ## ## 1 3.29e8 2 [Dip~ 1 [Rep~ 1 [Red~ 1 [Pul~ 4 [Agr~ 4 [Agr~ 2 [The~ 4 [Yes~ 1 [## 2 3.29e8 1 [Mil~ 1 [Rep~ 1 [Red~ 1 [Pul~ 2 [Dis~ 4 [Agr~ 2 [The~ 4 [Yes~ 2 [## 3 3.29e8 1 [Mil~ 2 [Dem~ 1 [Red~ 1 [Pul~ 2 [Dis~ 2 [Dis~ 2 [The~ 4 [Yes~ 1 [## 4 3.29e8 1 [Mil~ 2 [Dem~ 2 [Mai~ 2 [Add~ 4 [Agr~ 5 [Agr~ 1 [The~ 4 [Yes~ 1 [## 5 3.29e8 1 [Mil~ 2 [Dem~ 2 [Mai~ 1 [Pul~ 3 [Nei~ 2 [Dis~ 2 [The~ 1 [No] 2 [## 6 3.29e8 2 [Dip~ 1 [Rep~ 2 [Mai~ 2 [Add~ 3 [Nei~ 4 [Agr~ 2 [The~ 4 [Yes~ 2 [## # ... with 22 more variables: polact 2 <dbl+lbl>, polact 3 <dbl+lbl>, polact_4 <dbl+lbl>, hddv1 <dbl+lbl>, hdmed1_strat <dbl+lbl>, ## # ## # hdmed1_pacifist <dbl+lbl>, hdmed1_warmonger <dbl+lbl>, hddv2 <dbl+lbl>, ## # hdmed2 strat <dbl+lbl>, hdmed2 pacifist <dbl+lbl>, ## # hdmed2_warmonger <dbl+lbl>, birthyr <dbl>, gender <dbl+lbl>, ## # educ <dbl+lbl>, pid3 <dbl+lbl>, pid7 <dbl+lbl>, ideo5 <dbl+lbl>, ## # newsint <dbl+lbl>, pew religimp <dbl+lbl>, approve b <dbl>, ...

The experiment data

summary(mydata)

Console Terminal	× R Markdown ×	Markers × Jobs	×				
~/ 🔿							
hddv2	hdmed2_strat	hdmed2_pacifist	hdmed2_warmong	er birthyr	gender	educ	pid3
Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1925	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:2.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:1956	1st Qu.:1.000	1st Qu.:2.000	1st Qu.:1.000
Median :4.000	Median :4.000	Median :3.000	Median :2.000	Median :1971	Median :2.000	Median :3.000	Median :2.000
Mean :3.505	Mean :3.403	Mean :2.716	Mean :2.304	Mean :1970	Mean :1.549	Mean :3.355	Mean :2.108
3rd Qu.:5.000	3rd Qu.:5.000	3rd Qu.:4.000	3rd Qu.:3.000	3rd Qu.:1984	3rd Qu.:2.000	3rd Qu.:5.000	3rd Qu.:3.000
Max. :5.000	Max. :5.000	Max. :5.000	Max. :5.000	Max. :1998	Max. :2.000	Max. :6.000	Max. :5.000
pid7	ideo5	newsint	pew_religimp	approve_b		internatioli	sm ally_trust
Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.00	Min. :0.0000	Agree Somewhat	:450	Min. :0.0000
1st Qu.:1.000	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:1.00	1st Qu.:0.0000	Agree Strongly	:112	1st Qu.:1.0000
Median :4.000	Median :3.000	Median :1.000	Median :2.00	Median :1.0000	Disagree Somewh	iat :288	Median :1.0000
Mean :3.642	Mean :3.069	Mean :1.753	Mean :2.32	Mean :0.6415	Disagree Strong	ly :105	Mean :0.7922
3rd Qu.:6.000	3rd Qu.:4.000	3rd Qu.:2.000	3rd Qu.:4.00	3rd Qu.:1.0000	Neither Agree r	or Disagree:244	3rd Qu.:1.0000
Max. :8.000	Max. :6.000	Max. :7.000	Max. :4.00	Max. :1.0000			Max. :1.0000
				NA's :231			NA's :1

Exploring the data: cross-tabs

Cross-tabs
table(type = mydata\$hawk_t, support = mydata\$hddv1)

support
type 1 2 3 4 5
1 59 132 148 187 74
2 73 83 83 217 143
tab2 <- table(support = mydata\$hddv1, party = mydata\$party_t)
addmargins(tab2)</pre>

##	р	arty		
##	support	1	2	Sum
##	1	55	77	132
##	2	100	115	215
##	3	115	116	231
##	4	209	195	404
##	5	120	97	217
##	Sum	599	600	1199

Data analysis: first steps

```
# Calculate mean support for president
# Using the $ sign method
mean1 <- sum(mydata$hddv1) / nrow(mydata)
mean1</pre>
```

```
## [1] 3.299416
```

```
# Using the indexing method
mean2 <- sum(mydata[,14]) / nrow(mydata)
mean2</pre>
```

[1] 3.299416

```
# Mean proportion of support
mean3 <- mean(mydata$approve_b, na.rm = TRUE)
mean3</pre>
```

[1] 0.6415289

Logical values

► TRUE / FALSE output.

Logical values

class(FALSE)

[1] "logical"

as.integer(TRUE)

[1] 1

v1 <- c(FALSE, TRUE, TRUE, FALSE, FALSE)

mean(v1)

[1] 0.4

sum(v1)

[1] 2

Relational operators

Evaluate the relationship between two values.

Results are displayed as logical values

[1] TRUE "aggies" == "Aggies" ## [1] FALSE

"Aggies" == "Aggies"

[1] TRUE

12 > 9

Relational operators

Apply to vectors: results are logical values.

```
v3 <- c(4,8,-1,-9,7)
```

v3 < 0

[1] FALSE FALSE TRUE TRUE FALSE

v3 >= 4

[1] TRUE TRUE FALSE FALSE TRUE

v3 != 7

[1] TRUE TRUE TRUE TRUE FALSE

Sub-setting data

Partition/split our data for certain calculations.

```
# Proportions of support by party
mean(mydata$approve_b[mydata$party_t == 1], na.rm = TRUE)
## [1] 0.6797521
mean(mydata$approve_b[mydata$party_t == 2], na.rm = TRUE)
## [1] 0.6033058
# Mean approval score by party
mean(mydata$hddv1[mydata$party t == 1], na.rm = TRUE)
## [1] 3.398998
mean(mydata$hddv1[mydata$party_t == 2], na.rm = TRUE)
```

[1] 3.2

Sub-setting data

- Create subset of one group only.
- Only 'Hawkish' presidents.

```
# Sub-set 'hawks'
mysubdata1 <- mydata[mydata$hawk_t == 1,]
dim(mysubdata1)</pre>
```

[1] 600 32

```
# Calculate mean support/approval
mean(mysubdata1$hddv1)
```

[1] 3.141667
mean(mysubdata1\$approve_b, na.rm = TRUE)

[1] 0.5774336

Sub-setting data

 Subset function: construct a dataset only for the variables we are interested in.

mysubdata2 <- subset(mydata, subset = (hawk_t == 2))</pre>

View(mysubdata2)

^	caseid \$ Case ID	hawk_t [‡] hawk_t	party_t ‡ party_t	rapproche_t + rapproche_t	success_t success_t	hawk [‡] hawk	intl ‡ internationalism	trust [‡] trust	voted16 [‡] Voted in 2016
1	329144398								4
2	329124511								4
3	329023155								4
4	329124618								4
5	329011534								4
6	329056352								4
7	328905656								1
8	329147372								4
9	329147427								4
10	329147506								4
11	328849981								4
12	329002390								4
13	328770388								4
14	329231291								1
15	329254548	2	1	2	2	3	4	2	4

Calculating Group means

 Evaluate difference in support between Republican - Democrat president

Create sub-samples for rep/dem president
mysubdata_rep <- subset(mydata, subset = (party_t == 1))
mysubdata_dem <- subset(mydata, subset = (party_t == 2))</pre>

Compute difference in means mean(mysubdata_rep\$approve_b, na.rm = TRUE) mean(mysubdata_dem\$approve_b, na.rm = TRUE)

[1] 0.07644628

Compare means within a subset

Hawkish president: sub-sets for respondents' gender

```
# Create sub-samples for gender president
mysubdata4_male <- subset(mydata, subset = (hawk_t == 1 & gender == 1))
mysubdata4_female <- subset(mydata, subset = (hawk_t == 1 & gender == 2</pre>
```

```
# Compute difference in means
mean(mysubdata4_female$approve_b, na.rm = TRUE) -
    mean(mysubdata4_male$approve_b, na.rm = TRUE)
```

[1] -0.06519359

Conditional Statements

- Useful for creating new variables (columns) in our data.
- Conditional based on values of other variables.
- ▶ Rely on TRUE / FALSE logical statements.

The ifelse() function

- ifelse(condition, value if TRUE, value if FALSE).
- Can accept multiple conditions.

```
# Cross-tabs: variable values
table(women_voters = mydata$new1)
```

```
## women_voters
## 0 1
## 683 516
```

Cross-tabs: counts of support for new variable
table(newvar = mydata\$new1, support = mydata\$approve_b)

support
newvar 0 1
0 186 361
1 161 260

The ifelse() function

Respondents' level of 'hawkishness' (survey item):

hawk – hawkishness, measured based on agreement with the statement "The use of military force only makes problems worse." 1 = Disagree strongly, 2 = Disagree somewhat, 3 = Neither agree nor disagree, 4 = Agree somewhat, 5 = Agree strongly

```
# Create variable
mydata$no_hawks <- ifelse(mydata$hawk>3,1,0)
# Cross-tabs: variable values
table(NoHawks = mydata$no_hawks)
```

NoHawks ## 0 1 ## 757 442

Factor Variables

Categorical variable with finite number of distinct levels/values.

intl – internationalism, measured based on agreement with the statement "The United States needs to play an active role in solving conflicts around the world." 1 = Disagree strongly, 2 = Disagree somewhat, 3 = Neither agree nor disagree, 4 = Agree somewhat, 5 = Agree strongly

Eactor Variables

Looking at factor variables

```
mydata$internatiolism <- as.factor(mydata$internatiolism)</pre>
class(mydata$internatiolism)
```

[1] "factor"

levels(mydata\$internatiolism)

```
## [1] "Agree Somewhat"
                                     "Agree Strongly"
## [3] "Disagree Somewhat"
                                     "Disagree Strongly"
## [5] "Neither Agree nor Disagree"
table(mydata$internatiolism)
```

##				
##	Agree	Somewhat	Agree	Strongly
##		450		112
##	Disagree	Somewhat	Disagree	Strongly
##		288		105
##	Neither Agree nor	Disagree		
##		244		

tapply() command

- Apply a function across all levels of factor variable.
- Sort in desired order

```
# tapply: calculate mean approval for all levels
app_int <- tapply(mydata$approve_b, mydata$internatiolism, mean, na.rm = TRUE)
app_int</pre>
```

##	Agree Somewhat	Agree Strongly
##	0.6544503	0.6086957
##	Disagree Somewhat	Disagree Strongly
##	0.6637555	0.6547619
## Neither	Agree nor Disagree	
##	0.5966851	
<pre># Sort by sort(app_i</pre>		
## Neither	Agree nor Disagree	Agree Strongly
##	0.5966851	0.6086957
##	Agree Somewhat	Disagree Strongly
##	0.6544503	0.6547619

Agree Somewhat
0.6544503
Disagree Somewhat
0.6637555

##

Experiments

Post and Sechser (2022)

- American public and the use of nuclear weapons.
- Multiple approaches:
 - Rejection
 - Indifference: "accomplish the goal, whatever the method".
- Nukes \rightarrow low-information issue
- ► The role of *expert/elite cues* in shifting public opinion.

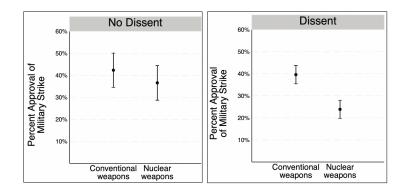
The design

Treatment 1: attack using conventional/nukes

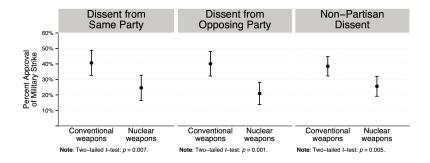
Treatment 2: dissenting cues.

Conventional Condition

However, some military observers questioned the ethics of the strike. Retired Admiral David Keating sharply criticized the use of cruise missilies, calling them "immoral and inhumane." Speaking yesterday at a conference on U.S. defense policy, Admiral Keating argued that "the successful outcome does not justify using these barbaric weapons."


"Preemptively attacking another nation with these weapons is an affront to our nation's most basic values," Admiral Keating said.

Nuclear Condition


However, some military observers questioned the ethics of the strike. Retired Admiral David Keating sharply criticized the use of nuclear weapons, calling them "immoral and inhumane." Speaking yesterday at a conference on U.S. defense policy, Admiral Keating argued that "the successful outcome does not justify using these barbaric weapons."

"Preemptively attacking another nation with nuclear weapons demolishes nearly 70 years of nuclear restraint," Admiral Keating said. "It's an affront to our nation's most basic values."

Results

Results

R Tech

- Creating (and saving) R scripts.
- Install and upload libraries (tidyverse, readxl, haven)
- ▶ Why comment (#) your code?
- Creating objects and vectors
- Join vectors into a dataset
- Apply math on vectors
- Logical values

The importance of counterfactual

Counterfactual in Foreign policy

May 2000: Israel withdraws from S. Lebanon Prime minister: Ehud Barak

- ► Gender / military experience as potential *causal factors*.
- Why maybe?
- Can we isolate the factors that lead to different outcomes?

Causal Inference: QSS textbook

- Does an applicant's race affects the chances she/he are offered a job?
- Is $Race \rightarrow$ a causal factor for job prospects?
- My name affects my chances of landing a job.
- Is it only my name/race??

Causal Inference: QSS textbook

Résumé	Black-sounding	Callback		Aga	Education
i	name T _i	$Y_i(1)$	$Y_i(0)$	- Age	Education
1	1	1	;	20	college
2	0	?	0	55	high school
3	0	?	1	40	graduate school
:	:	:	:	:	:
п	1	0	?	62	college

Other factors:

- Age.
- Education.
- Other?

The fundamental problem of causal inference

- We cannot observe counterfactual outcomes.
- Assume research design helps us infer about our observed counterfactual outcomes.
- Identification process: same situation, one factor changes (president's gender, applicant race).
- ▶ Not possible in reality: *immutable characteristics*.

Randomized Controlled Trails (RCTs)

The gold standard of causal inference

Why?

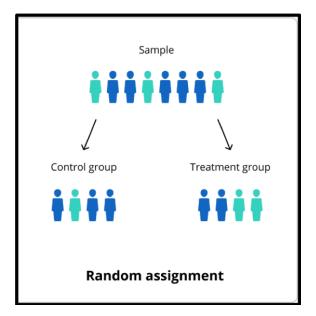
- Establish causality by *isolating* the factor of interest. How?
 - Randomization random assignment to treatments.

RCTs

Sample Average Treatment Effect (SATE)

- > The average individual-level treatment effect.
- Defined as:

$$SATE = 1/n \sum_{i=1}^{n} Y_i(1) - Y_i(0)$$


- \blacktriangleright n \rightarrow sample size.
- i \rightarrow respondent in the sample.

RCTs

- Compare outcomes between groups.
- SATE: average outcome between groups.
- Difference-in-means estimator

Random Assignment

Random Assignment

- Why important?
- Confounding factors similar in sample.
- Our treatment \rightarrow Variation in outcomes.
- Our treatment \rightarrow Causal factor.

Internal Validity

- Design satisfy causal assumptions?
- ▶ How well does the help us in testing our research question.
- Experiments offer strong *internal* validity.

External Validity

- Can we trust our results beyond the sample?
- Students sample = general public?
- Convenient samples: why?
- Main problem: sample selection bias
- Other design problems:
 - 1. Setting: lab versus real-world (Hawthorne effect).
 - 2. Unrealistic treatments: missing information.

Reduce external validity

- Replications same design, vary the sample:
 - General public and special samples (students, elites, experts, etc.)
 - Cross-national.
 - Multiple samples of same population.
- \blacktriangleright Consistency in results \rightarrow more confidence in proposed causal factor.

Wrapping up week 2

Causality vol. I:

- Assessing causal effects.
- Experimental designs (RCTs).
- Counterfactuals.
- Randomization.
- Internal and external validity.
- R work: creating and saving script, cross-tabs, relational operations, sub-set data, ifelse(), factor variables.