Bush 631-603: Quantitative Methods

Lecture 11 (04.04.2023): Uncertainty vol. I

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Spring 2023

What is today's plan?

- Calculating uncertainty: detecting 'real' findings.
- From r.v.s. to estimators.
- Types of estimators: data, surveys, experiments.
- Simulations.
- Confidence intervals
- ▶ R work: table(), loops, simulations, plots.

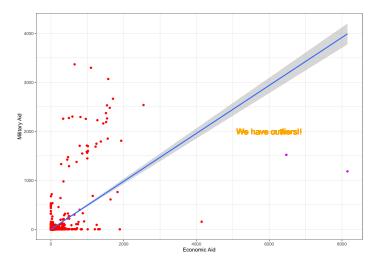
Final project

Data report:

- Succinct description of topic and importance.
- What are my central arguments?
- Clear variable names.
- Variable values.

Visuals?

- Labels (axis, ticks).
- Title.
- Attention grabbing use colors and add relevant text.

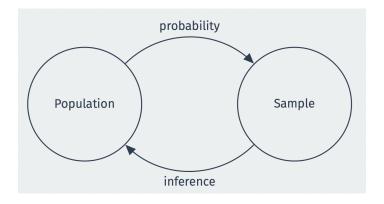

Useful visuals

What looks better?

Useful visuals

Or this...

We have findings!!!


- ▶ Data patters are systematic? Or noise?
- Our estimates → real relationship or random?
- Using probability calculations.

Events to numbers

- Random variables: map outcomes to numbers.
- ► Assess quantities in population → we cannot.
- Use sample: r.v.s and the values of concepts.
- Define a random variable X:
 - ▶ X=1 if 'random' person supports president, 0 otherwise.
 - $\bar{X} = E[\bar{X}] = \mu ??$
 - Yes!!
 - Large samples to the rescue.

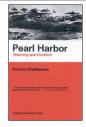
Our data - our research interests

Making inferences from data to population

Uncertainty

- Research questions:
 - 1. President's gender and FP actions?
 - 2. Regime type and frequency of terrorism?
 - 3. Regional trade zone and countries trade balance?
- ▶ Treatment / Factor has an effect:
 - Women are more aggressive in defense spending and public threats.
 - ▶ Democratic regimes experience more terror incidents.
 - ▶ Regional trade zone increased the trade balance with neighbors.
- Are these effects real or just noise?

Uncertainty in data: US and WW II


Pearl Harbor (December 7, 1941)

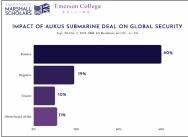
"Signals to noise ratio" (Wohlstetter 1962)

Diplomatic .vs. military intelligence (Kahn, 1991)

Uncertainty in data: 9/11 Intelligence failure

MEMORANDUM FOR: FROM:						
OFFICE:			•			
SUBJECT:	Re: Khalid Al-Mihdhar	- .				
REFERENCE:						
Original Text of Original Text of						
 TO: FROM: OFFICE: DATE: 08/21/2001 0 SUBJECT: PRE: Khalid Al-M			÷.			
	number? How interesting. I I y time frame, yes? Probably					
as I was reviewing all the cables on Khalid Al-Mihdhdar, I noticed he had a U.S. Visa in his passport. I asked INS to check and they just came back and said he entered the U.S. on 15 January 2000 and listed the Los Angeles						
January. Maybe there is som the morning, and will then be		s run his name by Ressan arly afternoon to talk about	n? I will be here in			

Estimation


- Quantity of interest in population.
- Point estimation → a 'best guess'.
- Many possible point estimators:
 - ▶ Population mean (μ) : elections turnout.
 - 'Special population' mean (μ): likelihood of joining international treaty.
 - ▶ Variance of a r.v. (σ^2) : variation in support for sanctioning China/Russia.
 - ▶ Population ATE $(\mu_1 \mu_0)$: difference b-w treatment and control groups.

Estimation

Estimator θ

AUKUS PARTNERSHIP The UK, the United States and Australia have agreed a landmark defence and security partnership that will defend our shared interests around the world

How to estimate public opinion?

Random sample of respondents.

Estimating with public samples

- ▶ Assume: $X_1...X_n$ iid Bernoulli distributed random variables.
- ▶ Proportion of support for deal \rightarrow p.
- ► An estimate: one realization of estimator (random variables right??)
- Estimate:

$$\hat{\theta} = \bar{X_n} \rightarrow \text{population p}$$

Still, an estimation...

- ► Is our estimate good?
- **Estimation error**: difference with 'true value'.
- Error = $\bar{X_n} p$
- p is unknown, now what?
- Calculate average magnitude of estimation error.
- ▶ Hypothetical repetition of sampling:
 - Multiple estimate values $(\hat{\theta})$
 - Multiple estimation error values.

Estimation

- lacktriangle Repetition o sampling distribution of $\hat{ heta}$
- Estimation error / bias using expectations
- ▶ bias = $E(est.Error) = E(Estimate truth) = E(\bar{X}_n) p = p p = 0$
- Unbiasedness: Sample proportion is on average equal to the population proportion.
- Accuracy over multiple samples (not a single-shot survey)
- Estimator is unbiased

Estimators in experiments

- ► Treatment(s) and control groups.
- ▶ *Estimator* \rightarrow diff-in-means \rightarrow ATE.
- Sample Average Treatment Effect (SATE):

$$SATE = \frac{1}{n} * \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

Diff-in-means estimator

- Random sampling of population.
- Random assignment into treatment(s).
- ► Population Average Treatment Effect (PATE)
- ► PATE = E[Y(1) Y(0)]
- ▶ Diff-in-means estimator is *unbiased*

Unbiased estimator

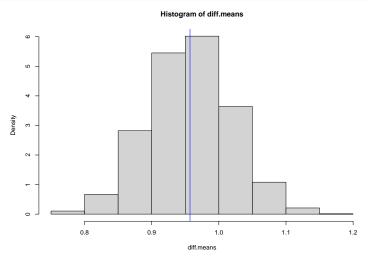
Monte-Carlo simulations

```
# Create Sample, Control and treatment groups (means and SDs)
n <- 500
m110 <- 0
sd0 <- 1
mu1 <- 1
sd1 <- 1
# Create sampling distributions
y0 \leftarrow rnorm(n, mean = mu0, sd = sd0)
head(y0)
## [1] -1.1891583 0.3019846 -0.9613135 1.5872927 -1.7777404 0.9177315
v1 \leftarrow rnorm(n, mean = mu1, sd = sd1)
# calculate diff-in-means (SATE)
tau <- y1 - y0
head(tau)
## [1] 3.0845840 2.5603027 2.3726093 -0.4174234 4.6027838 -1.4232981
SATE <- mean(tau)
SATE
## [1] 0.9570636
```

Increasing the sample

► Simulate & randomly assign treatment

```
# Repeat
sims <- 5000
diff.means <- rep(NA,sims)


for (i in 1:sims){
   treat <- sample(c(rep(1, n/2), rep(0, n/2)), size = n, replace = FALSE)
   diff.means[i] <- mean(y1[treat == 1] - mean(y0[treat == 0]))
}

est.error <- diff.means - SATE
summary(est.error)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.2058361 -0.0414926 0.0005126 0.0003470 0.0423939 0.2121086
```

SATE estimator (large sample simulation)

```
hist(diff.means, freq = FALSE)
abline(v=SATE, col = "blue")
```


Estimator distribution

Calculate variation with SD (estimator)

```
# SD of estimator
sd(diff.means)

## [1] 0.06148037
sqrt(mean((diff.means - SATE)^2))

## [1] 0.06147521
```

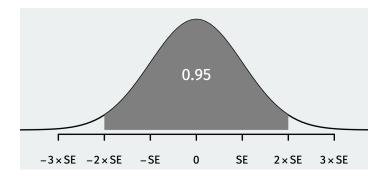
- Calculate SD only with a simulation.
- ightharpoonup Reality ightarrow one sample, SD is unknown.

SD of sample

- Standard error: estimated degree of deviation from expected value
- Variability of our (single!) sample

```
## [1] 0.0902675
mean(diff.se)
```

```
## [1] 0.0893954
```


Broader approach to estimator distribution

Quantities beyond means and SD.

Confidence Intervals

- ▶ Range of true values of estimator.
- Range of plausible values.
- Rest on assuming repeated sampling.

Chance errors intervals

- Normal distribution empirical rule.
- ▶ 95% of values within 2 SD, in sample \rightarrow 2 SEs.
- ▶ Range of possible values $\rightsquigarrow \pm 1.96$ SEs

BYO CIs

- Constructing confidence intervals.
- ▶ (1) What confidence level?
- ► Conventional: 95%.
- ▶ Defined using $\alpha(0-1) = ?$
- (2) CI: $100 * (1 \alpha)\% = \bar{X} \pm z_{\alpha/2} * SE$
- $\alpha = 0.05 \to 95\%$ CI.

Confidence Intervals

► Formal CI:

$$CI(\alpha) = (\bar{X}_n - z_{\alpha/2} * SE, \bar{X}_n + z_{\alpha/2} * SE)$$

• Critical value = $(1 - \alpha/2)$

α	Confidence level	Critical value $z_{\alpha/2}$	R expression
0.01	99%	2.58	qnorm(0.995)
0.05	95%	1.96	qnorm(0.975)
0.1	90%	1.64	qnorm(0.95)

Confidence intervals

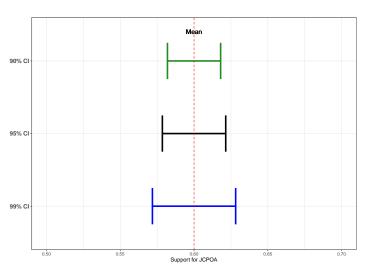
- Finding the critical values
- qnorm() function: define lower.tail = FALSE

```
# find critical values
qnorm(0.05, lower.tail = FALSE)

## [1] 1.644854
qnorm(0.025, lower.tail = FALSE)

## [1] 1.959964
qnorm(0.005, lower.tail = FALSE)

## [1] 2.575829
```

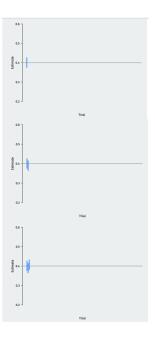

Cls in R

Cls for our JCPOA survey

```
# Sample, Mean support and SE
n < -2000
x.bar < -0.6
Iran.se <- sqrt(x.bar * (1-x.bar)/n)</pre>
Tran.se
## [1] 0.01095445
# CTs
c(x.bar - qnorm(0.995) * Iran.se, x.bar + qnorm(0.995) * Iran.se)
                                                                    #99%
## [1] 0.5717832 0.6282168
c(x.bar - qnorm(0.975) * Iran.se, x.bar + qnorm(0.975) * Iran.se) #95%
## [1] 0.5785297 0.6214703
c(x.bar - qnorm(0.95) * Iran.se, x.bar + qnorm(0.95) * Iran.se) #90%
## [1] 0.5819815 0.6180185
```

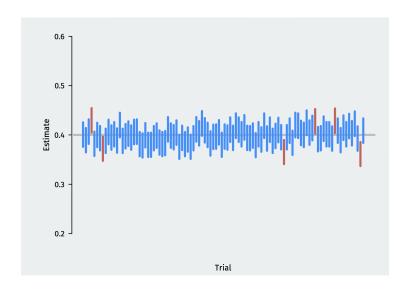
Visualize Cls

How do Cls look like?

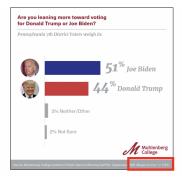

Interpretation

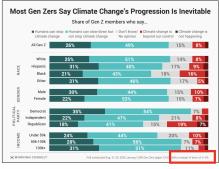
- How to interpret CIs?
- ightharpoonup NO ightharpoonup 95% chance true value is within the interval.
- Why? Estimator true value is unknown.
- YES → Interval contains true value 95% of the times in repeated random samples.
- ▶ Not the Wait What? pic again right???
- One more time:

Interval contains the true value 95% of the times in repeated random samples


Simulate Cls

- ▶ Policy: Global *Co*₂ emissions reduction
- ► Sample = 1500 respondents
- ▶ p = 0.4 (assumed support)
- ► Calculate 95% Cls in multiple samples


Simulate Cls


How many overlap with 'true' support?

Polls: the 'fine print'

Margin of error

Margin of error

- ► MOE: half-width of a 95% CI.
- ▶ JCPOA sample proportion of support = 0.6
- ▶ JCPOA sample MOE = ± 3 %
- ► JCPOA 95% CI: [57%,63%]

Margin of error

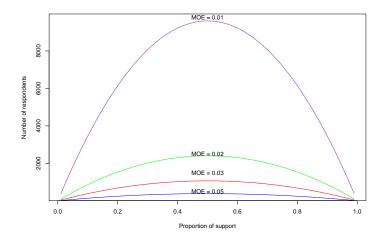
$$MOE = \pm z_{0.025} * SE \approx \pm 1.96 * \sqrt{\frac{\bar{X}_n * (1 - \bar{X}_n)}{n}}$$

- What is the minimum sample size?
- ▶ Popular stage in research design.
- Conduct before fielding the survey.

MOE and Sample size

- Calculate multiple proportions of support.
- ▶ Define your MOE: 1%, 2%, 3%, 5%
- Possible sample sizes

```
# Define MOEs
moe <- c(0.01, 0.02, 0.03, 0.05)


# Define vector of proportion of support (0-100 by 1%)
prop <- seq(from = 0.01, to = 0.99, by = 0.01)

# Using MOE and proportion for possible sample sizes
num <- 1.96^2 * prop * (1-prop) / moe[1]^2
head(num, n=10)</pre>
```

```
## [1] 380.3184 752.9536 1117.9056 1475.1744 1824.7600 2166.6624 2500.8816
## [8] 2827.4176 3146.2704 3457.4400
```

MOE and Sample size

- ▶ Plotting our analysis
- CLT, SE and sample size...

Cls & Experiments

- Quantify uncertainty for causal effect analysis.
- ▶ JCPOA support among Americans → good!
- lacktriangle Variations of JCPOA support among groups ightarrow even better!
 - $\blacktriangleright \ \mathsf{Men} \longleftrightarrow \mathsf{Women}.$
 - $\blacktriangleright \ \ \mathsf{Young} \longleftrightarrow \mathsf{Old}.$
 - Vets (military) ←→ no military background.
- ▶ The quantity we want: population ATE $(\mu_T \mu_C)$.
- Estimator: sample ATE $(\hat{X_T} \hat{X_C})$.

Let's reduce plastics

- ► Environmental policy: 'fighting-back' against plastic bags.
- ▶ Policy, main aspects financial incentives:
 - 1. Financial incentives: cash back.
 - 2. Financial incentives: fee for plastic bags.
- ▶ Define outcome: $X_i = 1$ if support policy, 0 otherwise.
- ▶ Sample mean (treatment: cash back), $\bar{X_T} = 0.43$
- ▶ Sample mean (control: plastics fee), $\bar{X_C} = 0.32$

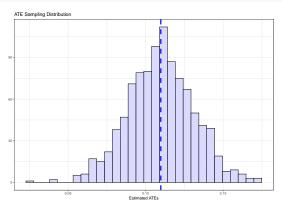
$$\hat{ATE} = \hat{X_T} - \hat{X_C} = 0.11$$

Simulating policy support

- Sample diff-in-means on average equal to population diff-in-means
- Still, some variation

[1] 0.109774

```
# Simulate our experiment in population
xt.sims <- rbinom(1000, size = 1000, prob = 0.43) / 1000
head(xt.sims)


## [1] 0.433 0.413 0.395 0.409 0.422 0.435
xc.sims <- rbinom(1000, size = 1000, prob = 0.32) / 1000
head(xc.sims)

## [1] 0.322 0.317 0.334 0.327 0.330 0.329
# Mean
mean(xt.sims-xc.sims)
```

ATE distribution

► How our $A\hat{T}E \approx 0.11$ looks like?

```
# Plot with tidyverse
hp <- data.frame(mn = (xt.sims-xc.sims))
ggplot(hp, aes(mn)) +
    geom_histogram(fill="#D6D7FF", color="black", alpha=0.9) +
    geom_vline(xintercept = mean(hp&mn), color = "blue", linetype = "dashed", size = 1.5) +
    xlab("Estimated ATEs") + ylab("") + ggtitle("ATE Sampling Distribution") +
    theme_bw()</pre>
```

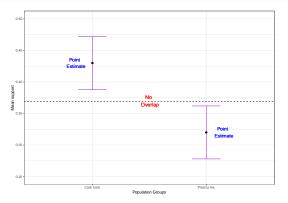

Simulating policy support

- ▶ $A\hat{T}E \approx 0.11 \rightarrow$ makes a difference?
- Use SEs to learn of variation of estimator

```
# Calculate SE

x.se <- sqrt((0.43*0.57)/1000 + (0.32*0.68)/1100)
x.se

## [1] 0.02104562


# 95% CIs for meaningful results
c(0.43 - qnorm(0.975) * x.se, 0.43 + qnorm(0.975) * x.se)

## [1] 0.3887513 0.4712487
c(0.32 - qnorm(0.975) * x.se, 0.32 + qnorm(0.975) * x.se)

## [1] 0.2787513 0.3612487
```

Plot and check effect

```
# plot with tidyverse
ggplot(se_plot, aes(x,y)) +
geom_errorbar(aes(ymin = y-2*se, ymax = y+2*se), width = 0.25, color = "purple") +
geom_point(size = 2) + ylim(0.25,0.5) +
geom_bline(yintercept = 0.369, linetype = "dashed") +
geom_text(x=1.5,y=0.37,label = "No \n Overlap", color = "red", size = 5) +
geom_text(x=0.85,y=0.43,label = "Point \n Estimate", color = "blue", size = 4.5) +
geom_text(x=2.15,y=0.32,label = "Point \n Estimate", color = "blue", size = 4.5) +
ylab("Mean support") + xlab("Population Groups") +
theme_bw()
```


More simulations and data

- Create our own experimental data
- library(fabricatr): Random data generator
- Steps:
 - 1. Create treatments (assign sample size and probabilities).
 - 2. Create binary outcome variables.
 - 3. Create continuous outcome variables.
- Join all variables into one large data set.
- Focus on treatment 1 and cont. outcome variable:
 - Regime of aid recipient (democracy or not).
 - Extent of aid provided.

Create random data

Code for treatments and all variables.

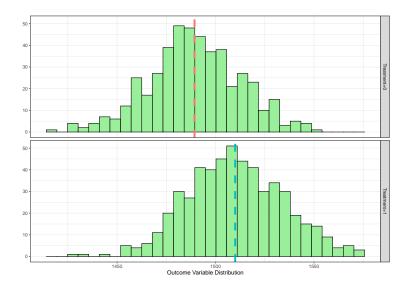
```
## Create data
# Set seed for randomizer
set.seed(12345)
# Create treatments (sample size of 1000)
exp.dat <- fabricate(
 N = 1000,
 trt1 = draw_binary(N = 1000, prob = 0.5),
 trt2 = draw binary(N = 1000, prob = 0.5))
# Create Binary & Continuous outcome variables
random vars <- fabricate(
 N = 1000.
 dv_cor1 = correlate(given = exp.dat$trt1, rho = 0.8,
                      draw_binary, N = 1000, prob = 0.65),
 dv_cor2 = correlate(given = exp.dat$trt2, rho = 0.65,
                      draw_binary, N = 1000, prob = 0.35),
 cont_cor1 = correlate(given = exp.dat$trt1, rho = 0.55,
                        rnorm, mean = 1500, sd = 30),
 cont cor2 = correlate(given = exp.dat$trt2, rho = 0.75.
                        rnorm, mean = 1450, sd = 45))
```

Create random data

Join variables and final data output

```
# Tidyverse approach to join columns
exp.dat <- left_join(exp.dat, random_vars, by = "ID")
# Our random experimental data
head(exp.dat, n=8)</pre>
```

```
##
      ID trt1 trt2 dv cor1 dv cor2 cont cor1 cont cor2
                                   1523.100
                                             1395.533
## 1 0001
                                  1492.402 1466.578
## 2 0002
## 3 0003 1
                                0 1500.165 1431.904
## 4 0004
                                0 1510.011 1406.666
## 5 0005
                                  1515.649 1442.158
## 6 0006
                                0 1512.053 1430.640
## 7 0007
                                1 1474.265 1451.380
## 8 0008
                                  1498.759 1443.719
```


Exploring the experimental data

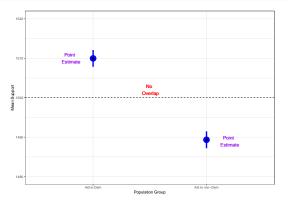
[1] 20.6396

- Random assignment of 'respondents'?
- Calculate mean outcome for treatment 1 and ATE.

```
# How many 'respondents' assigned per treatment?
n.zero <- sum(exp.dat$trt1 == 0)
n.zero
## [1] 469
n.one <- sum(exp.dat$trt1 == 1)
n.one
## [1] 531
# Mean outcome variable by treatment 1
est.zero <- mean(exp.dat$cont_cor1[exp.dat$trt1 == 0])
est.zero
## [1] 1489.333
est.one <- mean(exp.dat$cont_cor1[exp.dat$trt1 == 1])
est one
## [1] 1509.973
# calculate ATE (Y(1) - Y(0))
est.one - est.zero
```

How does it look?

Regime treatment matters?


[1] 1507.890 1512.056

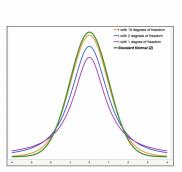
- ightharpoonup Calculate margin of error ightarrow SEs
- ▶ Calculate Cls (define $\alpha = 0.05$)

```
# SEs for treatment 1 results
se.zero <- sd(exp.dat$cont_cor1[exp.dat$trt1 == 0]) / sqrt(n.zero)
se.zero
## [1] 1.068058
se.one <- sd(exp.dat$cont_cor1[exp.dat$trt1 == 1]) / sqrt(n.one)
se one
## [1] 1.06291
# Define alpha
alpha <- 0.05
# CTs
ci.zero <- c(est.zero - gnorm(1-alpha / 2) *
               se.zero, est.zero + qnorm(1-alpha / 2) * se.zero)
ci zero
## [1] 1487.240 1491.427
ci.one <- c(est.one - gnorm(1-alpha / 2) *
              se.one, est.one + qnorm(1-alpha / 2) * se.one)
ci one
```

How does our effect looks? matters?

```
# plot with tidyverse
ggplot(se_plot2, aes(x,y)) +
geom_pointrange(aes(ymin = y-2*se, ymax = y+2*se), color = "blue", size = 1.75) +
geom_point(size = 2) + ylim(1480,1520) +
geom_bline(yintercept = 1500, linetype = "dashed") +
geom_text(x=1.5,y=1502,label = "No \n Overlap", color = "red", size = 4.5) +
geom_text(x=0.8,y=1510,label = "Point \n Estimate", color = "purple", size = 4.5) +
geom_text(x=2.2,y=1489,label = "Point \n Estimate", color = "purple", size = 4.5) +
ylab("Mean Support") + xlab("Population Group") +
theme_bw()
```


Clarifying objectives


- What's with all the simulations?
- Real world: 1 sample, 1 mean...
- Research supported by simulations: public policy
 - Support for government policy: expand anecdotal findings.
 - ▶ Lobbying in the senate: women representatives example.
- Research supported by simulations: business world
 - ▶ Product design and development: expand A/B testing.

Estimation approaches

- ightharpoonup Estimation thus far ightarrow CLT
- ► ATE & CIs are based on CLT assumption
- ▶ Alternative: outcome variable (DV) ~ N (μ, σ^2)
- Use student's t-distribution:
 - Also describes DOF (degrees of freedom).
 - normal z-score == student's t-statistic.
 - Distribution has 'heavier tails'.

student's t-distribution

- ▶ DOF = (n k), (n= observations; k=model parameters).
- Critical value: t-statistic

		mbers in ea rees of free					ution with obabilities (ja).
d\$/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077594	6.313752	12.70620	31.82052	63,65674	636,6193
2	0.288875	0.816497	1.885818	2.513988	4.30265	6.96456	3.32484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.5240
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74995	4.90409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8683
6	0.264835	6.717558	1.439756	1.943180	2.44651	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414824	1.884579	2.36462	2.99795	3.49948	5.4079
	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.302722	1.303029	1.833113	2.26216	2.82144	3.24984	4,7609
10	0.268185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4,5889
11	0.258556	0.897445	1.363430	1.795885	2.20099	2.71908	3.10581	4.4370
12	0.259033	0.695483	1.356217	1,782288	2.17681	2,68100	3.05454	43178
13	0.258591	0.683629	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
14	0.258213	0.682417	1.345830	1.761310	2.14473	2.62449	2.97684	4.1405
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
16	0.257599	0.690122	1.336757	1,745884	2.11991	2.58349	2.92078	4,0150
17	0.257347	0.689195	1.333379	1.729607	2.10582	2.56693	2.89623	3.9651
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9218
19	0.256923	0.687621	1.327728	1,729133	2.09302	2.53948	2.86063	3.8834
20	0.256743	0.686954	1.325341	1,724718	2,08596	2.52798	2.84534	3.8495
21	0.258580	0.686352	1.323188	1.720743	2.07961	2.51765	2.83136	3.8193
22	0.258432	0.685805	1.321237	1,717144	2.07387	2.50832	2.81836	3.7921
23	0.256297	0.685306	1.319490	1.713872	2.06886	2.49987	2.80734	3.7676
24	0.256173	0.684850	1.317836	1,710882	2.06390	2.49216	2.79694	3.7454
25	0.258060	0.684430	1.316345	1,708141	2.05554	2.48511	2.78744	3.7251
26	0.255955	0.684043	1.314972	1.705618	2.05553	2.47863	2.77871	3.7066
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	2.77068	3.6896
28	0.255768	0.683353	1.312527	1,701131	2.04841	2.46714	2.76326	3.6739
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6554
30	0.255605	0.882756	1.310415	1.697261	2.04227	2.45726	2.75000	3.6460
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32835	2.57583	3.2905
а			80%	90%	95%	98%	99%	99.9%

t-distribution in R

- ► Cls are wider → more conservative
- Use qt() function

```
# CI: CLT vs. t-distribution
# Treatment = 0
ci.zero
## [1] 1487.240 1491.427
ci.zeroT \leftarrow c(est.zero - qt(0.975, df = n.zero - 1) * se.zero,
               est.zero + qt(0.975, df = n.zero - 1) * se.zero)
ci.zeroT
## [1] 1487.234 1491.432
# Treatment = 1
ci.one
## [1] 1507.890 1512.056
ci.oneT \leftarrow c(est.one - qt(0.975, df = n.one - 1) * se.one,
              est.one + qt(0.975, df = n.one - 1) * se.one)
ci.oneT
## [1] 1507.885 1512.061
```

Wrapping up Week 11

Summary:

- ▶ The challenge of uncertainty: Separating signals and noise.
- ▶ Estimation using sample mean or diff-in-means.
- Simulations and estimators probability distributions.
- ▶ SD, SEs and margin of errors.
- Constructing CI how to interpret 95% CI?
- Estimators are uncertain, but meaningful?
- Estimating with the t-distribution.