Bush 631-603: Quantitative Methods

 Lecture 10 (03.28.2023): Probability vol. IIRotem Dvir

The Bush school of Government and Public Policy
Texas A\&M University

Spring 2023

What is today's plan?

- Calculating uncertainty: probability
- How probability is linked to our data.
- Random sample sums, means and their uncertainty.
- Large samples/data and their benefits for our analysis.
- R Tech: data management with tidyverse.
- R work: table(), loops, simulations, plots.

We have findings!!!

- Data patters are systematic? Or noise?
- Our estimates \rightarrow real relationship or random?

Probability:

- Set of tools to measure uncertainty in world (and our data).
- Method to formalize uncertainty or chance variation.
- Define odds for all possible outcomes.

Probability theory

Calculate probability of event:

$$
P(A)=\frac{\text { Elements }(A)}{\text { Elements }(\Omega)}
$$

Example: coin toss $\times 3$
Get an least two heads?
Sample space (Ω): $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH} . \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$.
Event A: $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$.
Probability: $P(A)=\frac{4}{8}=0.5$

Conditional probability

- We know event B occurred, what is the probability of event A ?

$$
P(A \mid B)=\frac{P(A \& B)}{P(B)}
$$

- Conditioning information matters:
- Twins.
- Monty hall problem (why switching is good..)

Independence

- Events are not related.
- Knowing the A occurred does not affect the probability of B occurring.
- Marginal probability of B (knowing A occurred) remains $P(B)$.
- Formally:
- $P(A \& B)=P(A) * P(B)$
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$

Study probabilites

SOYOURETEIITHEME

THERTSHOHINE

Study probability

- Foundations for estimating quantities we care about.
- Making inferences from data to population

How did we get the data?

- Learn about the process that 'generated our data'
- The role of uncertainty in this process

Approval data

How popular is president Biden?

How popular is Joe Biden?
An updating calculation of the president's approval rating, accounting for each poll's
quality, recency, sample size and partisan lean. How this works n

Random variables

- President's approval \rightarrow public samples.
- Using probability to infer from sample to US population.
- The challenge: How to "draw" a Biden supporter?
\Downarrow

Use random variables to map outcomes to numbers

Random draws...

- Draw people???
- Random selection of values.

Random draws of. . . states

(4) THE WORLD BANK

Data $>$ Data Catalog $>$ World Development Indicators $>$ Tables >6.11

6.11 World Development Indicators: Aid dependency

Show Metadata Links
B1胃

	Net official development assistance				Aid dependency ratios		
	Total	per capita	Grants	Technical cooperation	Net official development assistance	Net official development assistance	Net official development assistance
	\$ millions	\$	\$ millions	\$ millions	\% of GNI	\% of gross capital formation	\% of imports of goods, services and primary income
	2019	2019	2019	2019	2019	2019	2019
Afghanistan	4,284	113	3,915	300	21.9	.	57.8
Albania	28	10	150	103	0.2	.	0.4
Algeris	176	4	98	160	0.1	0.2	*
American Samoa	-	*
Andorra	-
Angols	50	2	158	47	0.1	.	0.2
Antigua and Barbuda	27	283	23	1	1.7	*	*
Argentina	18	0	49	43	0.0	0.0	0.0
Armenia	420	142	109	47	3.0	17.6	5.1

- Our objective: study regime type and extent of aid.
- Regimes: dictators, democracies, semi-democracies, etc.
- Draw regimes at-random and test causal mechanism.

Random draws, why?

Randomization:

- RCT: average all pre-treatment factors.
- RCT: strong causal explanation.
- Observational: reduce selection bias.
- Allow expectations to be refuted.

We generate estimates, but with uncertainty

Numbers and Aggies example

Aggies in the NFL: position groups and conferences

\#\# \# A tibble: 6 x 5				
\#\# Player	Team	Position	Group	Conference
\#\# <chr>	<chr>	<chr>	<chr>	<chr>
\#\# 1 Christian Kirk	Jacksonville Jaguars	WR	OF	NFC
\#\# 2 Jake Matthews	Atlanta Falcons	OT	OF	NFC
\#\# 3 Otaro Alaka	Baltimore Ravens	LB	DF	AFC
\#\# 4 Justin Madubuike	Baltimore Ravens	DT	DF	AFC
\#\# 5 Tyrel Dodson	Buffalo Bills	LB	DF	AFC
\#\# 6 Germain Ifedi	Chicago Bears	OG	OF	NFC

Random variables and Aggs

```
## # A tibble: 2 x 2
## Group n
## <chr> <int>
## 1 DF 12
## 2 OF 22
```

- Choose one at-random.
- Define random variable:
- $X=1$ if selected Aggie plays Offense, $X=0$ otherwise.
- Why random?
- Before we draw an Aggie, uncertainty about the value of X.
- Direct link to probability:
- $P(X=1)=P($ Draw Offense $)=\frac{22}{34}=64.7 \%$

Random variables

- Classified by construction and shape

Bernoulli

- r.v. X follows a bernoulli distribution with probability p if:
- X takes one of two values only $(0,1)$.
- $P(X=1)=p$
- $P(X=0)=1-p$
- Fits a binary indicator
- Describes any potential variable with a probability that $X=1$.

Random variables

- Why?
- The uncertainty of our estimates.
- Figure the uncertainty of quantities as sample means or sums.
- Aggies data: drawing two players (with replacement):
- $X_{1}=1$ if Aggie is Offense, $X_{1}=0$ otherwise.
- $X_{2}=1$ if Aggie is Offense, $X_{2}=0$ otherwise.
- Define new r.v $\rightarrow S=X_{1}+X_{2}$
- Data is the sum of all potential X_{1}, X_{2}.
- What are the values of S ?

Random variables to probabilities

- Map S values to probabilities
- Always draw 2 Aggs.
- Sample space $(\Omega)=\{O F-O F ; O F-D F ; D F-O F ; D F-D F\}$.
- $\mathrm{k} \rightarrow$ Values of $\mathrm{S}(0,1,2)$.
- $P(S=k)$?
- $P(S=k)=P\left(A g_{1}+A g_{2}\right)=P\left(A g_{1}\right) * P\left(A g_{2}\right)$
- Why? Addition rule for mutually exclusive events.

Random variables to probabilities

```
prob_off <- 22/34
prob_def <- 12/34
# Offense:Offense (OF-OF)
prob_off * prob_off
## [1] 0.4186851
# Offense:Defense (OF-DF)
prob_off * prob_def
## [1] 0.2283737
# Offense:Defense (DF-OF)
prob_def * prob_off
## [1] 0.2283737
# Defense:Defense (DF-DF)
prob_def * prob_def
## [1] 0.1245675
```


Mapping draws to probabilities

Plotting probabilities of separate draws

Outcome	S	Probability
OF-OF	0	0.1245
OF-DF	1	0.2283
DF-OF	1	0.2283
OF-OF	2	0.4186

k	$P(S=k)$
0	0.1245
1	0.4567
2	0.4186

Binomial Distribution

- X is r.v. taking any value between 0 and n.
- Coin flips: number of heads with probability p in n independent flips.
- Aggs: $S=$ number of OF when we draw 2 players ($\mathrm{n}=2$; $\mathrm{P}=0.4186$).

Probability Mass Function (PMF):

- Evaluates probability of any possible value of these random variables.

$$
\begin{gathered}
P(X=k)=\binom{n}{k} * p^{k} *(1-p)^{n-k} \\
\binom{n}{k}=\frac{n!}{(k!(n-k)!)}
\end{gathered}
$$

Binomial distribution

- $X=$ number of heads in multiple coin flip trails
- $P=f(x)=0.5 ; n=10$

Binomial random variable

- Larger sample, more draws, same probability
- How many OF players?

```
# Possible number of Offensive players of 500
rbinom(n=3, size = 500, prob = 0.647)
```

\#\# [1] 314318319

- Simulation

```
sims <- 10000
draws <- rbinom(sims, size = 500, prob = 0.647)
head(draws, n=12)
```

\#\# [1] $298317 \quad 336311331332319312333 \quad 334300308$
mean(draws)
\#\# [1] 323.5901

Plotting our sims

```
    # Histogram of draws
```

hist (draws, freq $=$ FALSE, xlim $=c(0,600)$, ylim $=c(0,0.04)$)
abline(v = 323.3, col = "red", lwd = 2)

Histogram of draws

Simulating Congress calls

- Lobbying firm: gender balance of calls to senators
- Total number of calls $=1000$, random selection (with replacement)
- How many calls to women senators?

```
# Simulate calls (p=0.26)
sims2 <- 10000
draws2 <- rbinom(sims, size = 1000, prob = 0.26)
mean(draws2)
## [1] 259.9875
head(draws2, n=12)
## [1] 263 230 293 235 257 278 258 263 271 269 276 276
```


Plotting Senate calls simulation

Histogram of calls to Senate

Probability distributions

- Describe the uncertainty of random variables
- We learn of the population after analyzing the sample

Probability distributions

- Multiple ways to represent the distribution.
- Type of r.v. \rightarrow which distribution we face.
- Two general classes:
- Discrete: X takes finite number of values (heads in n coin flips, battle deaths in civil wars).
- Continuous: X takes any real value (GDP/cap, how long do you spend time on Tik-Tok?)

Discrete PMF

- Barplot to illustrate probabilities (share of each possible value)
- Bernoulli r.v.: using the Ags data (OF or DF?)

```
plot.dat <- data.frame(x = c("0", "1"), y = c("0.3529", "0.647"))
ggplot(plot.dat, aes(x,y)) +
    geom_bar(stat = "identity", width = 0.5, fill = "maroon") + ylab("P(X)") +
    ggtitle("Bernoulli r.v. of drawing OF Aggie") + theme_bw()
```


Binomial PMF

- Illustrate probabilities of 3 values (r.v. X)

```
dbinom(x = c(0,1,2), size = 2, prob = 22/34)
## [1] 0.1245675 0.4567474 0.4186851
plot.dat2 <- data.frame(x = c("0", "1", "2"), y = c("0.124", "0.456", "0.418"))
ggplot(plot.dat2, aes(x,y)) +
    geom_bar(stat = "identity", width = 0.65, fill = "maroon") + ylab("f(x)") +
    theme_bw()
```


Continuous random variables

- Probability density function (PDF).
- Describe probability 'around' a given point.
- An 'infinite' histogram \rightarrow many bins (looks smooth).
- Probability of interval $=$ area under curve.

Random variable distributions

Cumulative distribution function (CDF).

- Common to discrete or continuous random variables.
- Describe the probability that some r.v. will be less or equal to some k.

Ags position group draws: PMF to CDF

Well, lets

R Tech

- Data management with tidyverse package.
- Functions:
- Subsets \rightarrow use filter().
- Add variables \rightarrow use mutate().
- Organize data \rightarrow use select(), arrange().
- Group data and calculate summary stats (mean, median):
- Use summarise() to create new sub-set for stats.
- Create your preferred stats: mean(),median(),max()...

Using r.v. distributions

- How to use probability distributions?
- Mean: center of our distribution.
- Variance/Standard deviation: the 'spread' around the center.
- Mean \& Variance \rightarrow Population parameters (unknown).
- Use our sample (data) to learn about both parameters.

Means \& Expectations

Calculate the average: $\{1,1,1,3,4,4,5,5\}$

1. Common: sum all objects \& divide by number of objects.

$$
\frac{1+1+1+3+4+4+5+5}{8}=3
$$

2. Frequency weights: multiply each value by its frequency in the sample.

$$
1 * \frac{3}{8}+3 * \frac{1}{8}+4 * \frac{2}{8}+5 * \frac{2}{8}=3
$$

- Use the frequency weights approach to create the mean of r.v.s.

Expectation

- Expectation $(E[X])$ for the mean of r.v. X.

$$
E[X]=\sum_{j=1}^{k} * x_{j} * P\left(X=x_{j}\right)
$$

- The weighted average of the values of the r.v weighted by the probability of each value.

Expectation

- What is $E[X]$?
- Let X be the age for randomly selected individual.
- $E[X] \rightarrow$ average age in the population.
- $E[X]$: the link of the sample and population means.
- $E[X]$ properties:
- $E[a]=a$ (constant).
- $E[a X]=a * E[X]$ (scale for mean).
- $E[a X+b Y]=a * E[X]+b * E[Y]$ (mean of two values).

Variance

- The 'spread' of the distribution.

$$
V[X]=E\left[(X-E[X])^{2}\right]
$$

- Weighted avg. of squared distance if each observation from mean.
- Larger deviations \rightarrow larger variance.
- If X be the age for randomly selected individual.
- $V[X] \rightarrow$ spread of ages in population.

Variance

- $S D(X)=\sqrt{V[X]}$: allows to make comparison in data.
- $V[X]$ properties:
- $V[c]=0$ (constant).
- $V[a X+c]=a^{2} * V[X]$ (scale distribution).
- $V[X+Y] \neq V[X]+V[Y]$ (unless $X \& Y$ are independent).

Sums, means and random variables

- Let X_{1} and X_{2} be two r.v.s
- Then, $X_{1}+X_{2}$ is also r.v.
- Mean: $E\left[X_{1}+X_{2}\right]$; Variance: $V\left[X_{1}+X_{2}\right]$
- We 'draw' two global leaders and assign X_{1}, X_{2} as their ages.
- Sample mean \rightarrow also a r.v.

$$
\bar{X}=\frac{X_{1}+X_{2}}{2}
$$

- Uncertainty due to possibility of 'drawing' other leaders.

Global leaders data

- Data: personal characteristics of leaders (Horowitz 2015)

```
head(age.lead, n=9)
## # A tibble: 9 x 4
## idacr year leader age
## <chr> <dbl> <chr> <dbl>
## 1 USA 1877 Grant 55
## 2 USA 1881 Hayes 59
## 3 USA 1881 Garfield 50
## 4 USA 1885 C. Arthur 56
## 5 USA 1889 Cleveland 52
## 6 USA 1893 Harrison 60
## 7 USA 1897 Cleveland 60
## 8 USA 1901 McKinley 58
## 9 USA 1909 Roosevelt, T. 51
```


Full sample means

```
# mean of sample
mean(age.lead$age, na.rm = T)
```

\#\# [1] 57.122
\# Plot distribution of all leaders in data
$\operatorname{ggplot}($ age.lead, aes (x=age)) +
geom_density(fill="forestgreen", alpha=0.65) +
geom_vline(aes(xintercept = mean(age.lead\$age, na.rm = T)), size=1.2, color="red") +
theme_classic()

Distributions of sums \& means

- 'Draw' two leaders, calculate sum and mean of age.

Drawing leaders at-random

| | X_{1} | X_{2} | | $X_{1}+X_{2}$ |
| :--- | :--- | :--- | :--- | :--- | Mean X

Independent and identical r.v.s

- $X_{1} \ldots X_{n}$ are iid r.v.s.
- Random sample of n respondents on a survey question.
- Identically distributed: distribution of X_{i} is same for all i
- $E\left(X_{1}\right)=E\left(X_{2}\right)=\ldots=E\left(X_{n}\right)=\mu$
- $V\left(X_{1}\right)=V\left(X_{2}\right)=\ldots=V\left(X_{n}\right)=\sigma^{2}$
- Key insights of iid properties:
- Sample mean = population mean (on average).
- Variance \leftarrow population variance and sample size.
- SD of sample \rightarrow standard error

$$
S E=\sqrt{V\left[\bar{X}_{n}\right]}=\frac{\sigma}{\sqrt{n}}
$$

Large samples: Global leaders

- We 'draw' two samples of global leaders
- Assign X_{1}, X_{2} as their ages.
- Uncertainty of our data - leaders change each draw.
- What happens to our means when the sample size increases?

Large samples

Law of Large numbers

- $X_{1} \ldots X_{n}$ is iid with mean μ and variance σ^{2}.
- As $n \uparrow, \bar{x} \rightarrow \mu$.
- $P(\bar{x}) \rightarrow \mu$ increases as n get larger.

The Normal distribution

$$
\mathrm{X} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

- Mean/expected value $=\mu$
- Variance $=\sigma^{2}$

The Normal distribution

- A "Bell-shaped" PDF
- Important properties:
- Any r.v. is more likely to be in center than tails.
- Unimodal: single peak, at the mean value.
- Symmetric around the mean: equal probabilities.
- Everywhere positive (tails 'stretch' to infinity).
- Standard normal distribution: mean $=0, S D=1$.
- Standard normal variable $\rightarrow z$-score: $Z=\frac{X-\mu}{\sigma}$

The Normal distribution

- Transforming the normal distribution:

Central limit theorem

- Let X_{i} be r.v. which is iid and normally distributed.
- \bar{X} : also normally distributed in large samples.

Sample mean tend to be normally distributed as samples get large

- Extends the application of r.v. in large samples. How?
- Value approaches μ and normally distributed.
- Better approximation of population mean value.
- Sample mean is normally distributed, regardless of the distribution of each X (r.v.).

Simulating larger sample (CLT)

- Draw at-random 1000 leaders from data.
- Calculate and save sample mean multiple times (use a loop)

```
sim.lead <- }100
all.mn <- rep(NA, sim.lead)
for (i in 1:sim.lead){
    lead.draw <- sample_n(age.lead, 1000)
    all.mn[i] <- mean(lead.draw$age, na.rm = T)
}
head(all.mn)
## [1] 57.04606 57.26931 57.20081 57.52178 57.28788 57.26289
mean(all.mn, na.rm = T)
## [1] 57.1238
```


Plotting the simulated data

```
# Save vector in data frame and plot (add 'population' mean)
d <- data.frame(x = all.mn)
ggplot(d, aes(x)) +
    geom_histogram(aes(y = stat(density)),fill="navyblue", color="black", alpha=0.9) +
    xlab("Mean simulated Age") + ylab("Density") +
    geom_vline(xintercept = 57.122, color = "red", size = 2) +
    geom_text(aes (x = 57, y = 1.53, label = "Population \n mean")) +
    theme_classic()
```


Plotting the simulated data

Empirical rule for normal distribution

If $\mathrm{X} \sim \mathbf{N}\left(\mu, \sigma^{2}\right)$, then:

68% of dis. $\rightarrow 1$ SD of mean
95% of dis. $\rightarrow 2$ SD of mean
99% of dis. $\rightarrow 3 \mathrm{SD}$ of mean

Empirical rule in R

```
# Values
pnorm(1) - pnorm(-1)
## [1] 0.6826895
pnorm(2) - pnorm(-2)
## [1] 0.9544997
# Use the leader data
mu <- mean(Leader$age, na.rm = T)
sig <- sd(Leader$age, na.rm = T)
pnorm(mu+sig, mean = mu, sd = sig) - pnorm(mu-sig, mean = mu, sd = sig)
## [1] 0.6826895
pnorm(mu+2*sig, mean = mu, sd = sig) - pnorm(mu-2*sig, mean = mu, sd = sig)
## [1] 0.9544997
```


Leaders age: normal distribution "break-down"

Wrapping up week 10

Summary:

- Probability and uncertainty.
- Mapping probability of events to random variables.
- Linking r.v. to our data - random selection of values.
- Sums and means of random sample.
- Probability distributions (Bernoulli, Binomial, etc.).
- Large samples and their benefits.
- CLT / Law of large numbers.
- The normal distribution.

Research Proposal by Midnight Friday (3/31)!!

