Bush 631-603: Quantitative Methods Lecture 9 (03.22.2022): Probability vol. I

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Spring 2022

What is today's plan?

- Calculating uncertainty: probability
- What is probability? why should we learn it?
- Probability theory (some equations...)
- How we use probability in the real world?
- R work: prop.table(), addmargins().
- Final project: the data report.

Learning from data

Our 8-week quest:

- How to estimate causal effects.
- Understand measurement challenges.
- Assess correlations.
- Generate prediction about unknown quantities.

The question now?

How do we know our estimates are 'real' or just due to random chance?

We have findings!!!

- Data patters are systematic? Or noise?
- Our estimates \rightarrow real relationship or random?

Solutions:

- Select (at random) a different treatment/control group.
- Select (at random) a different sample.
- Method to quantify the degree of statistical uncertainty of empirical findings.

Probability

PROBABILITY:

- Set of tools to measure uncertainty in world (and our data).
- Method to formalize uncertainty or chance variation.
- Define odds for all (defined) possible outcomes.

What's the chance?

January 28, 1986: Challenger shuttle

Probabilites translated

Challenger accident - chance of failure?

- ▶ Experts: 100-1.
- NASA management: 100,000-1.
- What is 100,000 in 1?
- Repeated testing and odds of event (failure).
- Enough events? we can calculate probabilities...

Probability explained

- Probability \rightarrow measure randomness.
- Random \neq complete unpredictability:
 - Short-term: unpredictable (very hard to calculate).
 - Long-term: predictable (multiple repetitions).

Probability explained

- Odds for heads? and tails?
- Overall: 0.5 probability H/T.

Coin toss chances

- 5 flips: HHHHT
- ► How 0.5 exactly?

The secret?

Repetition - multiple iterations

- Estimate probability.
- Why only estimate? "toss again..."
- Mathematical probability ideal in infinite series of trails.
- Explain long-term regularity of random event (behavior).

Why?

Can we estimate the odds?

- Religions?
- Place of residence: TX, NY?
- Other groups/identities?

Americans overestimate the size of minority groups and underestimate the size of most majority groups

Estimated proportions are calculated by averaging weighted responses (ranging from 0% to 100%, rounded to the nearest whole percentage) to the question 11 you had to guesa, what percentage of American solutis..." True proportions were drawn from a variety of sources, including the U.S. Census Bureau, the Bureau of Labor Statistics, and polis by YouGov and other polling firms.

They think order and chaos Humans are odd. are somehow opposites Law of Averages: When?

Rare event and our behavior

Cause of Death	Times more likely compared to a ter	to kill an American rorist attack	
Heart disease	3.	5,079	
Cancer	35	3,842	
Alcohol-related death	· · · · ·	1,706	
Car accident		1,048	
Risky sexual behavior		452	
Fall		353	
Starvation		187	
Drowning		87	
Railway accident		13	
Accidental suffocation in bed		12	
Lethal force by a law enforcement officer		8	
Accidental electrocution		8	
Hot weather		6	
	% Critical threat	% Important l critical thr	out not eat
nternational terrorism	79	18	
Development of nuclear weapons by Iran	75	18	

TABLE 1.1 How Dangerous Is Terrorism?

Solve this:

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Schools of thought

Frequentist

- The *limit* of relative frequency.
- Ratio of number of events occur and total number of trails.
- Challenge: same conditions??

BAYESIAN

- Measure of *subjective* belief about an event occurring.
- Challenge: how to conduct science?

Probability theory

Concepts, axions and definitions

- Sample space (Ω): set of all possible outcomes.
- Event: any subset of outcomes in sample space.
- Card deck: 52 cards (13 rank) × (4 suits)
- Trial: pick a card at-random

```
Sample space:

2  3  3  4  5  6  6  7  8  9  10  J  Q  K  A

2  3  4  5  6  7  8  9  10  J  Q  K  A

2  3  4  5  6  7  8  9  10  J  Q  K  A

2  3  4  5  6  7  8  9  10  J  Q  K  A

2  3  4  5  6  7  8  9  10  J  Q  K  A

2  3  4  5  6  7  8  9  10  J  Q  K  A

An event: picking a Queen, {Q , Q , Q 

An event: picking a Queen, {Q , Q , Q 

A
```

Probability

Calculate probability of event:

$$P(A) = \frac{Elements(A)}{Elements(\Omega)}$$

Example: coin toss \times 3

Sample space (Ω): {HHH,HHT,HTH,HTT,THH.THT,TTH,TTT}.

Get an least two heads?

Event A: {HHH,HHT,HTH,THH}.

Probability: $P(A) = \frac{4}{8} = 0.5$

Probability

- Define how likely/unlikely events are.
- Based on three axioms:
 - 1. Probability of any event A is nonnegative $(P(A) \ge 0)$.
 - 2. Normalization ($P(\Omega) = 1$).
 - 3. Addition rule If events A and B are mutually exclusive then P(AorB) = P(A) + P(B)
- Axioms $1\&2 \rightarrow 1 > P(event) > 0$

Gambling 101

Probability of mutually exclusive events

- What is $P(A) \rightarrow$ select Queen card at-random?
- Any card selection: 1/52.
- ► Select queen event: $\{Q\clubsuit, Q\diamondsuit, Q\heartsuit, Q\clubsuit\}$.
- P (event) = union of mutually exclusive events \rightarrow addition rule
- ► $P(Q) = P(Q\clubsuit) + P(Q\diamondsuit) + P(Q\heartsuit) + P(Q\clubsuit) = \frac{4}{52} \approx 7.7\%$

Events relationships

Mutually & not Mutually exclusive events

Probability facts

- Probability of complement: $P(A^{C}) = P(notA) = 1 P(A)$
- Probability of **not drawing** a Queen: $1 \frac{4}{52} = \frac{48}{52}$
- Probability of events (not disjointed): the presidential race with 3rd candidate.
- General addition rule: P(AorB) = P(A) + P(B) P(A&B)
- ► Cards example: probability of Queen or ♣?

▶ Queen
$$\left(\frac{4}{52}\right) + \clubsuit \left(\frac{13}{52}\right) - Q\clubsuit \left(\frac{1}{52}\right) = \frac{16}{52}$$

Probability facts

• Law of total probability: $P(A) = P(A\&B) + P(A\&B^{C})$

Calculating outcomes

- **Permutations**: enumerating all possible outcomes.
- Ordering three events (A/B/C): {ABC,ACB,BAC,BCA,CAB,CBA}.
- A short-cut??

Figure 6.3. A Tree Diagram for Permutations. There are 6 ways to arrange 3 unique objects. Source: Adapted from example by Madit, http://texample.net.

Calculating outcomes

General permutation formula:

$${}_{n}P_{k} = n * (n-1) * ... * (n-k+2) * (n-k+1) = \frac{n!}{(n-k)!}$$

How many ways to sit 5 students in our class?

Use permutations formula
factorial(25)/factorial(20)

[1] 6375600

Permutations

- The birthday problem:
 - What n so P(two people share birthday) > 0.5?
 - Easier route by looking at complement.
 - Find \rightarrow 1 P(nobody has the same birthday).

```
bday <- function(k){</pre>
  logdenom <- k * log(365) + lfactorial(365-k)
  lognumer <- lfactorial(365)</pre>
  pr <- 1 - exp(lognumer - logdenom)</pre>
  return(pr)
}
k < -1:25
test_bday <- bday(k)</pre>
names(test_bday) <- k</pre>
test_bday[19:25]
           19
                       20
                                   21
                                               22
                                                           23
##
```

0.3791185 0.4114384 0.4436883 0.4756953 0.5072972 0.5383443 0.5686997

24

25

Sampling procedures

With replacement:

- Same unit can be 'selected' repeatedly.
- Replace card in stack after draw.
- Two people born on the same day.

Without replacement:

- Each unit can be sampled at most once.
- Card removed after draw.
- Procedure matters for probability calculations.
- **Combinations**: another counting method (ignore ordering).

And. . .

And. . .

Probabilities and the real-world

Using probability in bars?

- Setting: 5 men, 5 women.
- Objective: get a dance.
- All go for blonde \rightarrow P(dance) = $\frac{1}{4}$
- Each man \rightarrow non-blonde: P(dance) = $\frac{1}{1}$
- Nash equilibrium: no incentive to deviate.
- Mutual cooperation: global trade, negotiations (prisoner's dilemma).

Conditional probability

- ▶ We know event B occurred, what is the probability of event A?
- Examples:
 - What is the probability of two states going to war if they are both democracies?
 - What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?
 - What is the probability that there will be a coup in a country conditional on having a presidential system?

Conditional probability

$$P(A|B) = \frac{P(A\&B)}{P(B)}$$

Conditional probability

Conditioning information matters!

Twins:

• Sample space: $\Omega = \{GG, GB, BG, BB\}.$

P(BB | at least one boy) = P(BB | elder is a boy)??

$$P(BB \mid \text{at least one boy}) = \frac{P(BB\&(BB|BG|GB))}{P(BB|BG|GB)} = \frac{P(BB)}{P(BB|BG|GB)} = \frac{1/4}{3/4} = \frac{1}{3}$$
$$P(BB \mid \text{elder is a boy}) = \frac{P(BB\&(BB|BG))}{P(BB|BG)} = \frac{P(BB)}{P(BB|BG)} = \frac{1/4}{1/2} = \frac{1}{2}$$

Conditioning info: numbers and Aggs

Aggies in the NFL: position groups and conferences

head(Ags)

##	#	A tibble: 6 x 5				
##		Player	Team	Position	Group	Conference
##		<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
##	1	Christian Kirk	Arizona Cardinals	WR	OF	NFC
##	2	Jake Matthews	Atlanta Falcons	OT	OF	NFC
##	3	Otaro Alaka	Baltimore Ravens	LB	DF	AFC
##	4	Justin Madubuike	Baltimore Ravens	DT	DF	AFC
##	5	Tyrel Dodson	Buffalo Bills	LB	DF	AFC
##	6	Germain Ifedi	Chicago Bears	OG	OF	NFC

Conditioning info: numbers and Aggs

```
# Tabulate data
t <- table(Conf = Ags$Conference, Pos.Grp = Ags$Group)
addmargins(t)</pre>
```

Pos.Grp
Conf DF OF ST Sum
AFC 8 10 2 20
NFC 4 12 2 18
Sum 12 22 4 38

- Choose one at-random.
- What is probability of choosing Offense?

•
$$P(OF) = \frac{22}{38} = 0.57$$

What is probability of choosing Offense & NFC?

• P(OF & NFC) =
$$\frac{12}{38} = 0.31$$

What is probability that randomly selected NFC is offense?

•
$$P(OF | NFC) = \frac{P(OF \& NFC)}{P(NFC)} = \frac{12/38}{18/38} = 0.66$$

Conditional probability in Global affairs

Military alliances: a contract

Global military alliances

Leeds (2003):

- Defensive cooperation.
- Offensive cooperation.
- Neutrality.
- Non-aggression.
- Consultation.

Type of Alliance

Probability and data

Military Alliances (ATOP) data (1815-2018)

##	#	A tibbl	.e: 6 x	24						
##		atopid	member	yrent	moent	ineffect	${\tt estmode}$	pubsecr	secrart	length
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	3150	58	1981	12	1	1	0	0	0
##	2	3900	58	1981	6	1	1	0	0	0
##	3	4778	58	1996	3	1	1	0	0	0
##	4	2075	700	1921	3	0	1	0	0	0
##	5	2090	700	1921	6	0	1	0	0	0
##	6	2170	700	1926	8	0	1	0	0	36
##	#	wit	h 14 mo	ore va	riables	s: offense	e <dbl>,</dbl>	neutral	<dbl>, 1</dbl>	10nagg <
##	#	consu	l <dbl< th=""><th>>, act:</th><th>ive <db< th=""><th>ol>, notai</th><th>iden <db]< th=""><th>L>, terri</th><th>res <dbl< th=""><th>>, spect</th></dbl<></th></db]<></th></db<></th></dbl<>	>, act:	ive <db< th=""><th>ol>, notai</th><th>iden <db]< th=""><th>L>, terri</th><th>res <dbl< th=""><th>>, spect</th></dbl<></th></db]<></th></db<>	ol>, notai	iden <db]< th=""><th>L>, terri</th><th>res <dbl< th=""><th>>, spect</th></dbl<></th></db]<>	L>, terri	res <dbl< th=""><th>>, spect</th></dbl<>	>, spect
##	#	milai	d <dbl></dbl>	>, base	e <dbl></dbl>	>, armred	<dbl>, @</dbl>	ecaid <db< th=""><th>ol>, Stat</th><th>teAbb <c< th=""></c<></th></db<>	ol>, Stat	teAbb <c< th=""></c<>
##	#	State	Name <	chr>						

Probability in R

Alliance & domestic ratification

```
# Probabilities for domestic ratification
prop.table(table(Ratification = atop2$estmode))
```

```
## Ratification
## 0 1
## 0.2187919 0.7812081
# Probabilities for secret provisions
prop.table(table(publicity = atop2$pubsecr))
```

publicity
0 1 2
0.92557828 0.01709688 0.05732484

Probability in R

- Alliance \rightarrow commitment.
- US guarantee military assistance?

```
# Subset data (tidyverse): US alliances only
atop.us <- atop2 %>%
filter(member == 2)
```

Probability of military commitment
prop.table(table(atop.us\$defense))

0 1 ## 0.4210526 0.5789474

Conditional probability

Types of military aid given that alliance has defensive provision
prop.table(table(atop2\$milaid[atop2\$defense == 1]))

0 1 2 3 4 ## 0.81632653 0.03755102 0.01551020 0.11183673 0.01877551

Probability in R

- Joint probability tables
- ► Marginal probabilities → sum of rows/columns

```
# Defense and Offense provisions
j1 <- prop.table(table(def = atop2$defense, off = atop2$offense))
addmargins(j1)
## off
## def 0 1 Sum
## 0 0.56569709 0.01738549 0.58308258
## 1 0.33132732 0.08559010 0.41691742
## Sum 0.89702441 0.10297559 1.0000000
# Offensive and secret provisions
j2 <- prop.table(table(secret = atop2$secrart, off = atop2$offense))
addmargins(j2)</pre>
```

##	c	off		
##	secret	0	1	Sum
##	0	0.849480389	0.076097888	0.925578277
##	1	0.003687563	0.00000000	0.003687563
##	3	0.003687563	0.00000000	0.003687563
##	4	0.004022796	0.001005699	0.005028495
##	5	0.001005699	0.00000000	0.001005699
##	6	0.00000000	0.001005699	0.001005699
##	7	0.002681864	0.00000000	0.002681864
##	8	0.034193765	0.023131076	0.057324841
##	Sum	0.898759638	0.101240362	1.00000000

Independence

- Events are not related.
- Knowing the A occurred does not affect the probability of B occurring.
- Marginal probability of B (knowing A occurred) remains P(B).

► Formally:

$$\blacktriangleright P(A\&B) = P(A) * P(B)$$

$$\blacktriangleright P(A|B) = P(A)$$

 $\blacktriangleright P(B|A) = P(B)$

Independence in ATOP data

Defense treaties & Economic aid: related?

```
# Marginal probability: levels of economic aid
prop.table(table(EconAid = atop2$ecaid))
## EconAid
##
            Ω
                                               З
## 0.88870037 0.01798439 0.02341364 0.06990159
# Marginal probability: defense alliance
prop.table(table(Defense = atop2$defense))
## Defense
##
           Ω
                      1
## 0.5830826 0.4169174
# Joint probability: defense and econ aid
prop.table(table(Defense = atop2$defense, EconAid = atop2$ecaid))
##
          EconAid
## Defense
                      0
                                               2
                                                           3
```

0 0.510349508 0.007125891 0.019681032 0.050559891 ## 1 0.378350865 0.010858500 0.003732609 0.019341703

Plotting independence

Defense treaties & Economic aid

Checking for independence of events: Military Alliances

Independence

- Throw conditional probability into the mix.
- ► The Monty Hall problem:

Bayesian probability

- The subjective side of probability estimates.
- How prior knowledge and new evidence shape our behavior?
- Bayes rule: mathematical solution to update our beliefs.

$$P(A|B) = \frac{P(B|A)*P(A)}{P(B)} = \frac{P(B|A)*P(A)}{P(B|A)*P(A)+P(B|A^{C})*P(A^{C})}$$

- ► P(A): prior probability.
- Event B occur.
- P(A|B) = posterior probability

Bayes in real life

- Where is my phone/pager?
- Health diagnosis.
- Monetary policy.
- Insurance premiums and hazard events.

Bayes and the British code breakers

Alan Touring and Enigma Machine

- Near-infinite potential code translations.
- Solutions \rightarrow previous encrypted messages.
- U-Boats \rightarrow weather and shipping phrases.

Wrapping up week 9

Summary:

- Probability: tool to measure uncertainty in events.
- What is it good for?
- Conditional probability: importance of information.
- Independence of events.
- Bayesian reasoning.

Final project: the data report

Final research project

- Data report document.
- Why? How does it help?
- Describe variables, measures.
- Explore the data add visuals.