Bush 631-603: Quantitative Methods Lecture 8 (03.08.2022): Prediction vol. III

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Spring 2022

What is today's plan?

- Task 1 lessons...
- Predictions: Linear model and causal inference.
- Binary predictors and randomized experiments.
- Multiple predictors, heterogeneous treatment effects.
- Writing: the 5 Ps.
- R work: Im(), levels(), coef().
- Final project prep.

Task 1

- Main issues:
 - Details, details...
 - Use your own words, no direct quoting.
- Internal and external validity:
 - Aspects to evaluate a research design, not results.
- Internal: how design helps answer research question?
 - Strong internal: experiments.
- External: can we generalize the results?
 - Strong: observational studies.

Least squared

The Linear model

$$Y = \alpha + \beta * X_i + \epsilon$$

Elements of model:

- Intercept (α): the average value of Y when X is zero.
- Slope (β): the average change in Y when X increases by 1 unit.
- Error/disturbance term (ε): the deviation of an observation from a perfect linear relationship.

Minimize the prediction error

Confused by data?

Regression to the mean - its everywhere

- What does our model tell us?
- Do the results mean anything?

- Predicting the counter-factual.
- Assumptions \rightarrow use regression models for prediction.

Randomized experiments: women politicians and policy outcomes

QSS example: West Bengal (1990's)

dim(women)

[1] 322 6

head(women)

##		GΡ	village	reserved	female	irrigation	water
##	1	1	2	1	1	0	10
##	2	1	1	1	1	5	0
##	3	2	2	1	1	2	2
##	4	2	1	1	1	4	31
##	5	3	2	0	0	0	0
##	6	3	1	0	0	0	0

Promoting women's issues

```
## drinking-water facilities
mean(women$water[women$reserved == 1]) -
    mean(women$water[women$reserved == 0])
```

[1] 9.252423

Irrigation facilities

```
mean(women$irrigation[women$reserved == 1]) -
    mean(women$irrigation[women$reserved == 0])
```

[1] -0.3693319

Promoting women's issues: regression analysis

```
# Drinking water model
lm(water ~ reserved, data = women)
##
## Call:
## lm(formula = water ~ reserved. data = women)
##
## Coefficients:
## (Intercept) reserved
##
   14.738 9.252
# Irrigation facilities model
lm(irrigation ~ reserved, data = women)
##
## Call:
## lm(formula = irrigation ~ reserved, data = women)
##
## Coefficients:
## (Intercept) reserved
       3.3879 -0.3693
##
```

Binary dependent variable:

- slope coefficient $(\beta) = diff-in-means$ estimator
- $\hat{\beta}$: estimated average treatment effect
- Effect with/without women leaders.
- Why works?
 - Randomization \rightarrow causal interpretation

Distributing foreign aid

US FOREIGN AID: 2021

Total obligations: \$38B 182 Countries

Main sectors: Health: \$15.75B Humanitarian Assistance: \$10.1B

Main agency: USAID: \$31.66\$ DoD: \$1.79B

Why foreign aid?

NATIONAL INTEREST VS. MORAL MOTIVES

The New York Times

Trump Embraces Foreign Aid to Counter China's Global Influence

<u>How China Is</u> <u>Challenging American</u> <u>Dominance in Asia</u>

Every Asian country now trades more with China than with the United States, often by a factor of two to one. Here's how the outlines of the rivalry are defining the future of the continent.

Public views of aid

US public opinion on aid (2019)

Wood, Hoy and Pryke (2020)

- Public attitudes towards foreign aid
- \blacktriangleright Context \rightarrow Australia and the Pacific region
- More support for *national interest* objectives?
- Invoke strategic competition China aid spike in Pacific

Public attitudes towards aid

Design: Experiment.

Sample: 2000 Australians (2019-2020).

Treatments:

- 1. Control no info
- 2. Measured China increases aid to Pacific.
- 3. Forceful China's aid with focus on increased influence.

Outcome measures:

- 1. AUS gives too much.
- 2. AUS more aid to Pacific.
- 3. Aid focus on AUS or support poor countries.

Foreign aid data

```
# Our Aussie data
dim(aus)
```

[1] 2001 19
Experimental groups counts ~ equal size
table(aus\$treatment_group)

1 2 3 ## 673 660 668 # Experimental groups proportions

```
prop.table(table(aus$treatment_group))
```

1 2 3 ## 0.3363318 0.3298351 0.3338331

General support for main measures

gen.means

##	#	A tibble: 5	x 2
##		Measure	mn_prop
##		<chr></chr>	<dbl></dbl>
##	1	Aussie_first	54.4
##	2	Too_much	46.0
##	3	Poor_first	45.6
##	4	more_pac	30.5
##	5	Too_little	17.3

Compare experimental groups: diff-in-means estimator

Diff-in-means estimators: AUS provides too much foreign aid mean(aus\$too_much_aid[aus\$treatment_group == 1], na.rm = T) mean(aus\$too_much_aid[aus\$treatment_group == 2], na.rm = T)

```
## [1] 0.07894105
mean(aus$too_much_aid[aus$treatment_group == 1], na.rm = T) -
mean(aus$too_much_aid[aus$treatment_group == 3], na.rm = T)
```

```
## [1] 0.0929299
mean(aus$too_much_aid[aus$treatment_group == 2], na.rm = T) -
mean(aus$too_much_aid[aus$treatment_group == 3], na.rm = T)
```

```
## [1] 0.01398885
```

Compare using regression models:

- control and measured conditions
- measured and forceful conditions

```
# Linear model coefficients == diff-in-means estimators
lm(too_much_aid ~ treatment_group, data = aus2)
```

```
##
## Call:
## Call:
## Coefficients:
## (Intercept) treatment_group
##
0.59671 -0.07894
Im(too_much_aid ~ treatment_group, data = aus3)
```

##
Call:
lm(formula = too_much_aid ~ treatment_group, data = aus3)
##
Coefficients:
(Intercept) treatment_group
0.46680 -0.01399

More measures:

- More aid to Pacific region.
- Aid to promote Aussie strategic goals.
- Aid to help poor countries in region.

```
# Diff-in-mens estimators
mean(aus$more_to_pac[aus$treatment_group == 1], na.rm = T) -
mean(aus$more_to_pac[aus$treatment_group == 2], na.rm = T)
```

```
## [1] -0.05192231
```

```
mean(aus$favour_aus[aus$treatment_group == 1], na.rm = T) -
    mean(aus$favour_aus[aus$treatment_group == 2], na.rm = T)
```

```
## [1] 0.06338742
```

```
mean(aus$favour_poor[aus$treatment_group == 1], na.rm = T) -
    mean(aus$favour_poor[aus$treatment_group == 2], na.rm = T)
```

```
## [1] -0.06338742
```

Aussies foreign aid views

Linear model elements:

• Slope (β) : the average chnage in Y when X increases by 1 unit.

When X is binary:

- Treatment: yes or no (no information or China focus).
- X change by 1 unit \rightarrow no to yes.
- ► Y (support) changes as well (measured in percentages).

Regression model

Why sanctions fail?

				Likelihood of Succe	ss Versus Failure		
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Hypothesized Variables							
All Busters	-0.24 (0.12) **	$-0.46 (0.15)^{***}$					
Black Knight Allies			0.05 (0.25)	-0.08(0.27)			
Black Knight Great Powers					-0.27(0.24)	-0.44 (0.40)	
HSE Black Knight							0.03 (0.67)
Control Variables							
US Cooperation		-0.99 (0.57)*		-0.93 (0.57)		-0.84(0.57)	
IO Support		-2.76(1.41)*		-2.56 (1.46)*		-2.17(1.49)	
IO × Coop		1.59 (0.60)***		1.54 (0.61)**		1.37 (0.62)**	
US Defensive Alliance		-0.70(0.76)		-0.59(0.72)		-0.73(0.77)	
Target Defense Alliances		0.00 (0.02)		0.00 (0.02)		0.00 (0.02)	
Modest Goal		1.82 (0.68)***		1.77 (0.68)***		1.73 (0.66)***	
Prior Relations		1.38 (0.46)***		1.37 (0.45)***		1.34 (0.46)***	
Democracy		-0.58(0.71)		-0.46 (0.68)		-0.31 (0.71)	
Post-Cold War		-0.79(0.64)		-0.79 (0.61)		-0.74(0.64)	
Time	-0.08(-0.18)	0.04(0.77)	-0.01 (0.69)	-0.11 (0.76)	-0.09(0.18)	-0.08(0.76)	-0.11(0.18)
Time ²	0.00 (-0.01)	0.03(0.14)	0.04(0.13)	0.05(0.14)	0.00 (0.01)	0.05 (0.15)	0.00 (0.01)
Time ³	-0.00(0.00)	-0.00(0.01)	-0.00(0.01)	-0.00(0.01)	00 (.00)	-0.00(0.01)	0.00 (0.00)
Constant	0.40 (-0.63)	-1.88 (1.59)	-0.77(1.02)	-3.08 (1.61)*	12(.51)	-2.79 (1.60)*	-0.25(0.51)
$Prob > X^2$	0.02	0.00	0.07	0.00	0.02	0.00	0.01
Observations	840	753	789	753	840	753	840

Regression model

Multiple predictors

$$Y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + \dots + \beta_p * X_p + \epsilon$$

How to interpret β_j ?

- ▶ Change in Y with 1-unit increase in X_j...
- As all other predictors are held constant.
- Independent effect of each β .

Least squared: Multiple predictors

Sum of Squared Residuals (SSR)

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta}_{1} * X_{1} - \hat{\beta}_{1} * X_{1} - \dots - \hat{\beta}_{p} * X_{p})^{2}$$

• Estimate parameters: $\hat{\alpha}, \hat{\beta}_{p}$.

Minimize SSR.

Foreign aid data

- Multiple predictors for aid support
- Using factor variables: binary outcome

```
### Generate a Factor variable for all groups
aus$grp <- NA
aus$grp[aus$treatment_group == 1] <- "Control"
aus$grp[aus$treatment_group == 2] <- "Measured"
aus$grp[aus$treatment_group == 3] <- "Forceful"
# Check levels of factor
levels(factor(aus$grp))</pre>
```

[1] "Control" "Forceful" "Measured"

Multiple binary predictors

```
Y(Support) = \alpha + \beta_1 * Control + \beta_2 * Measured + \beta_3 * Forceful + \epsilon
```

```
fit <- lm(favour_poor ~ factor(grp), data = aus)
fit

##
## Call:
## lm(formula = favour_poor ~ factor(grp), data = aus)
##
## Coefficients:
## (Intercept) factor(grp)Forceful factor(grp)Measured
## 0.40230 0.09690 0.06339
mean(aus$favour_poor[aus$grp == "Measured"], na.rm = T) -
mean(aus$favour_poor[aus$grp == "Control"], na.rm = T)</pre>
```

[1] 0.06338742

Multiple binary predictors

```
Coefficients = diff-in-means??
```

```
# Regression w/o the intercepts
fit3 <- lm(favour_poor ~ -1 + factor(grp), data = aus)
fit3
##
## Call:
## lm(formula = favour_poor ~ -1 + factor(grp), data = aus)
##
## Coefficients:
## factor(grp)Control factor(grp)Forceful factor(grp)Measured
## 0.4023 0.4992 0.4657</pre>
```

Multiple binary predictors

```
Same with tapply()
```

```
tapply(aus$favour_poor, aus$grp, mean, na.rm = T)
```

Control Forceful Measured
0.4022989 0.4991974 0.4656863

Average treatment effect: Control vs. Measured conditions

```
# Using coef() function
coef(fit3)["factor(grp)Control"] - coef(fit3)["factor(grp)Measured"]
```

factor(grp)Control
-0.06338742

Model fit: multiple predictors

 R^2 with multiple predictors ightarrow Adjusted R^2

Degrees of freedom (DOF):

- How many observations vary 'freely'?
- DOF: (n p 1) = n (p + 1)
- Multiple predictors \rightarrow larger R^2
- ▶ Large sample (data) \rightarrow not much difference b-w R^2 and adjusted R^2

Model fit: multiple predictors

R^2 and adjusted R^2 in regression model

```
# summary() model with multiple predictors
summary(lm(favour poor ~ grp + urban + hhold income + academic, data = aus))
##
## Call.
## lm(formula = favour_poor ~ grp + urban + hhold_income + academic,
      data = aus)
##
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -0 6335 -0 4465 -0 3319 0 5172 0 6962
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.998e-01 3.635e-02 8.248 3.23e-16 ***
## grpForceful 1.146e-01 2.929e-02 3.911 9.55e-05 ***
## grpMeasured 6.253e-02 2.942e-02 2.125 0.0337 *
               2.812e-02 3.162e-02 0.889 0.3740
## urban
## hhold_income 1.984e-07 2.373e-07 0.836 0.4032
## academic 1.464e-01 2.564e-02 5.708 1.35e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4907 on 1673 degrees of freedom
   (322 observations deleted due to missingness)
##
## Multiple R-squared: 0.03317, Adjusted R-squared: 0.03028
## F-statistic: 11.48 on 5 and 1673 DF, p-value: 6.477e-11
```

Heterogenous treatment effects

- Variation in effect of main predictor
- ► When?
- ► ATE vary among individuals: positive/negative
- Experiments: differences guide treatment assignment

Aussie foreign aid:

- Respondents' age and views of aid
- Do older respondents' support certain type of aid?

Heterogenous treatment effects

Aid to Pacific by respondents **age** category (over/under 50)

```
# Subset of over-50 respondents
aus.age <- subset(aus, over_fifty == 1)
# Diff-in-means: support for aid by groups
mean(aus.age$more_to_pac[aus.age$treatment_group == 1], na.rm = T) -
mean(aus.age$more_to_pac[aus.age$treatment_group == 2], na.rm = T)</pre>
```

```
## [1] -0.04676688
# Subset of under-50 respondents
aus.age2 <- subset(aus, over_fifty == 0)
# Diff-in-means: support for aid by groups
mean(aus.age2$more_to_pac[aus.age2$treatment_group == 1], na.rm = T) -
mean(aus.age2$more_to_pac[aus.age2$treatment_group == 2], na.rm = T)</pre>
```

```
## [1] -0.05992362
```

Estimated ATE

```
# Estimated treatment effect for age (over/under 50) by group
(mean(aus.age$more_to_pac[aus.age$treatment_group == 1], na.rm = T) -
 mean(aus.age$more_to_pac[aus.age$treatment_group == 2], na.rm = T)) -
(mean(aus.age2$more_to_pac[aus.age2$treatment_group == 1], na.rm = T) -
 mean(aus.age2$more_to_pac[aus.age2$treatment_group == 2], na.rm = T))
```

[1] 0.01315674

```
# Estimated treatment effect for age (across groups)
mean(aus$more_to_pac[aus$over_fifty == 1], na.rm = T) -
    mean(aus$more_to_pac[aus$over_fifty == 0], na.rm = T)
```

[1] 0.0884818

Older respondents are more supportive of aid to pacific (8% overall, 1% by experimental groups)

Regression model: conditional effects

Add predictor to the model

 $Y(Support) = \alpha + \beta_1 * Treatment + \beta_2 * RespondentGender + \epsilon$

▶ However, conditional effect \rightarrow Interaction model

 $Y(Support) = \alpha + \beta_1 * Treatment + \beta_2 * RespondentGender + \beta_3 * Treatment * RespondentGender + \epsilon$

Interaction models

$$Y = \alpha + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_1 * X_2 + \epsilon$$

- Coefficient β_3 : How X_1 depends on X_2 .
- Average effect of men respondents (and experimental group): $\beta_2 + \beta_3$.
- Average effect of women respondents: β_2 .

Interaction model in R

```
Syntax: use the (*) or (:) between factors
```

```
# Interaction model: gender and treatment group
summary(lm(favour poor ~ treatment group * male, data = aus2))
##
## Call:
## lm(formula = favour_poor ~ treatment_group * male, data = aus2)
##
## Residuals:
      Min 10 Median 30
##
                                     Max
## -0 4937 -0 4358 -0 3973 0 5642 0 6027
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     0.32021 0.06219 5.149 3.05e-07 ***
## treatment_group
                     0.08673 0.03935 2.204 0.0277 *
                       0.03850 0.08973 0.429 0.6679
## male
## treatment group:male -0.04818 0.05670 -0.850 0.3957
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.495 on 1217 degrees of freedom
    (112 observations deleted due to missingness)
##
## Multiple R-squared: 0.005842, Adjusted R-squared: 0.003392
## F-statistic: 2.384 on 3 and 1217 DF. p-value: 0.06775
```

Interaction model: continous predictors

- How the average treatment effect varies along age scale?
- ► Linearity assumption: one-unit increase in predictor → similar increase in outcome.
- Data: ICB (observational).
- Variables:
 - International crises: 1918-2015.
 - Y: Crisis management technique (how to respond).
 - ► X₁: Trigger event severity/type
 - ► X₂: Leaders' age.
 - Model: how response varies based on tirgger event (and leader's age).

$\textit{CrisisAction} = \alpha + \beta_1 * \textit{Trigger} + \beta_2 * \textit{Age} + \beta_3 * \textit{Trigger} * \textit{Age} + \epsilon$

^							
1			PANAY INCIDENT	Roosevelt, F.			
2		1946	TURKISH STRAITS	Truman	8/7/46		
3		1947	TRUMAN DOCTRINE	Truman			
4		1948	BERLIN BLOCKADE	Truman	6/24/48		
5		1948	CHINA CIVIL WAR	Truman	9/23/48		
6	USA	1950	KOREAN WAR I	Truman			
7			KOREAN WAR II	Truman			
8			KOREAN WAR III	Eisenhower			
9			GUATEMALA	Eisenhower			
10			DIEN BIEN PHU	Eisenhower			
11			TAIWAN STRAIT I	Eisenhower			
12		1956	SUEZ NATNWAR	Eisenhower	10/29/56		
13			SYRIA/TURKEY CONFRNT.	Eisenhower			
14	USA	1958	IRAQ/LEB. UPHEAVAL	Eisenhower	5/8/58		
15			TAIWAN STRAIT II	Eisenhower			
16	USA	1958	BERLIN DEADLINE	Eisenhower			
17		1961	PATHET LAO OFFENSIVE	Kennedy			
18		1961	BAY OF PIGS	Kennedy			

Outcome - crisis management method:

- Negotiation, mediation
- Non-military pressure (economic)
- Non-violent military
- Violence

Predictor - triggering event: Verbal/political act, violent act.

summary(mydata\$lead_age)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 18.00 48.00 56.00 55.84 64.00 91.00 2

summary(fit.age <- lm(crismg ~ triggr * lead_age, data = mydata))</pre>

```
##
## Call.
## lm(formula = crismg ~ triggr * lead_age, data = mydata)
##
## Residuals:
##
      Min
              10 Median
                              30
                                     Max
## -5.2086 -1.6012 0.9619 1.8246 4.0730
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.512835 0.935138 6.965 6.24e-12 ***
## triggr
                 -0.113761 0.134857 -0.844 0.39913
## lead_age
                 -0.041579 0.016074 -2.587 0.00984 **
## triggr:lead_age 0.005672 0.002337 2.427 0.01541 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.387 on 927 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.06487, Adjusted R-squared: 0.06184
## F-statistic: 21.44 on 3 and 927 DF, p-value: 1.984e-13
```

Heterogeneous treatment effects: trigger over age

Writing professional docx

The 5Ps

- People: who is my audience?
- Purpose: what is the goal of my product?
- **Problem**: what is the topic / issue at-stake.
- Product: what product am I preparing?
- Process: what's the plan?

Who are my readers / audience?

Guiding questions:

- ► Who are they?
- How much they know about the topic?
- How open are they to the message?
- How can I provide value?

The 5Ps: people

Example: study water access in Chad

- Audience: state dept. officials
 - General background.
 - Wide range of solutions.
 - Local offices that manage project.
- Audience: NGO group ("Grant Water in Chad")
 - Know about the issues.
 - Focused solutions.
 - Local people that can implement effectively.

The 5Ps: problem

- Clear definition of the issue and scope.
- Offer problem statement.
- Background.
- Diverse and high-quality supportive data.
- Systematic analysis of data.
- Draw useful conclusions that address the problem.

Example:Chad

The 5Ps: Product

- Clear message.
- Integrate high-quality, reliable data.
- BLUF.
- Organization and logic of content.
- Visuals for emphasis.

The 5Ps: Product

Infographic to present project

Causality with observational data

The problem of *free riding*

Leaders and alliance contribution

Business experience and military alliances (Fuhrmann 2020):

- Leader experience explain variations.
- Business: executive level.
- Smaller contributions (defense expenditures), Why?
- Egoistic tendencies.
- Belief in self-efficacy and power.

Our goals:

- 1. Evaluate casual effect with linear regression (Δ spending per year).
- 2. Run *placebo test*: strengthen the proposed causal links.

Alliance contribution

NATO Defense spending data (1949-2020)

head(matt1)

##	#	A tibbl	e: 6 x	74									
##		Country	ccode	`1949	9` `19	950`	`1951`	`195	52`	`1953`	`1954`	`1958	5` `19
##		<chr></chr>	<dbl></dbl>	<dbl< th=""><th>> <</th><th>ibl></th><th><dbl></dbl></th><th><db< th=""><th>>1></th><th><dbl></dbl></th><th><dbl></dbl></th><th><db]< th=""><th>L> <d< th=""></d<></th></db]<></th></db<></th></dbl<>	> <	ibl>	<dbl></dbl>	<db< th=""><th>>1></th><th><dbl></dbl></th><th><dbl></dbl></th><th><db]< th=""><th>L> <d< th=""></d<></th></db]<></th></db<>	>1>	<dbl></dbl>	<dbl></dbl>	<db]< th=""><th>L> <d< th=""></d<></th></db]<>	L> <d< th=""></d<>
##	1	Canada	20	NA	38	309.	7718.	1240)5.	14234.	13242.	13113	3. 133
##	2	USA	2	147593	3. 1586	520.	339387.	47808	30.4	92223.	424699.	402015	5. 4072
##	3	Czechia	316	NA	1	NA	NA	1	IA	NA	NA	NA	ł
##	4	Hungary	310	NA	1	NA	NA	ľ	IA	NA	NA	NA	ł
##	5	Poland	290	NA	1	NA	NA	1	IA	NA	NA	NA	ł
##	6	Belgium	211	2074	4. 20)92.	3095.	457	74.	4554.	4698.	3891	L. 37
##	#	wit	h 64 mo	ore var	iables	s: 19	57 <dbl;< th=""><th>>, 195</th><th>58 <d< th=""><th>lbl>, 19</th><th>959 <dbl< th=""><th>>, 1960</th><th>) <dbl></dbl></th></dbl<></th></d<></th></dbl;<>	>, 195	58 <d< th=""><th>lbl>, 19</th><th>959 <dbl< th=""><th>>, 1960</th><th>) <dbl></dbl></th></dbl<></th></d<>	lbl>, 19	959 <dbl< th=""><th>>, 1960</th><th>) <dbl></dbl></th></dbl<>	>, 1960) <dbl></dbl>
##	#	1961	<dbl>,</dbl>	1962 <	dbl>,	1963	<dbl>,</dbl>	1964	<dbl< th=""><th>>, 196</th><th>5 <dbl>,</dbl></th><th>1966 <</th><th><dbl>,</dbl></th></dbl<>	>, 196	5 <dbl>,</dbl>	1966 <	<dbl>,</dbl>
##	#	1967	<dbl>,</dbl>	1968 <	dbl>,	1969	<dbl>,</dbl>	1970	<dbl< th=""><th>>, 197</th><th>1 <dbl>,</dbl></th><th>1972 <</th><th><dbl>,</dbl></th></dbl<>	>, 197	1 <dbl>,</dbl>	1972 <	<dbl>,</dbl>
##	#	1973	<dbl>,</dbl>	1974 <	dbl>,	1975	<dbl>,</dbl>	1976	<dbl< th=""><th>>, 197</th><th>7 <dbl>,</dbl></th><th>1978 <</th><th><dbl>,</dbl></th></dbl<>	>, 197	7 <dbl>,</dbl>	1978 <	<dbl>,</dbl>
##	#	1979	<dbl>,</dbl>	1980 <	dbl>,	1981	<dbl>,</dbl>	1982	<dbl< th=""><th>>, 198</th><th>3 <dbl>,</dbl></th><th>1984 <</th><th><dbl>,</dbl></th></dbl<>	>, 198	3 <dbl>,</dbl>	1984 <	<dbl>,</dbl>
##	#	1985	<dbl>,</dbl>	1986 <	dbl>,	1987	<dbl>,</dbl>	1988	<dbl< th=""><th>>, 198</th><th>9 <dbl>,</dbl></th><th>1990 <</th><th><dbl>,</dbl></th></dbl<>	>, 198	9 <dbl>,</dbl>	1990 <	<dbl>,</dbl>
##	#	1991	<dbl>,</dbl>	1992 <	dbl>,	1993	<dbl>,</dbl>	1994	<dbl< th=""><th>>, 199</th><th>5 <dbl>,</dbl></th><th>1996 <</th><th><dbl>,</dbl></th></dbl<>	>, 199	5 <dbl>,</dbl>	1996 <	<dbl>,</dbl>

Leaders and military alliances expenditures

NATO leaders and defense spending data

ccode \textsc{COW numeric country code}	\$	¢ }ear ¢ }textsc{year}	leadername [‡] \textsc{leader name}	business \textsc{business experience}	\$	¢ Country	¢ def.exp	¢ def.delta
	2	2003	G.W. Bush		1	USA	612232.612	13.81651492
		2004	G.W. Bush			USA	667284.639	8.99201159
		2005	G.W. Bush			USA	698019.039	4.60589054
		2006	G.W. Bush			USA	708077.303	1.44097276
		2007	G.W. Bush			USA	726971.529	2.66838457
		2008	G.W. Bush			USA	779854.123	7.27436936
		2009	Obama			USA	841220.473	7.86895241
		2010	Obama			USA	865268.025	2.85865034
		2011	Obama			USA	855022.313	-1.18410840
		2012	Obama			USA	807530.267	-5.55448034
		2013	Obama			USA	745415.975	-7.69188406
		2014	Obama			USA	699563.842	-6.15121420
2	:0	1949	St. Laurent			Canada		
2	:0	1950	St. Laurent			Canada	3808.656	
2	:0	1951	St. Laurent			Canada	7718.028	102.64439720
2	0	1952	St. Laurent			Canada	12404.681	60.72344453
2	0	1953	St. Laurent			Canada	14234.412	14.75032982

Testing a causal mechanism

Does business experience matter?

```
# subsets by business experience
no.business <- subset(def.matt. subset = (business == 0))
business <- subset(def.matt, subset = (business == 1))</pre>
## Diff-in-means estimator
mean(business\$def.delta, na.rm = T) -
 mean(no.business$def.delta, na.rm = T)
## [1] -2.134511
# Regression model
lm(def.delta ~ business. data = def.matt)
##
## Call:
## lm(formula = def.delta ~ business, data = def.matt)
##
## Coefficients:
## (Intercept)
                  business
         2.847 -2.135
##
```

The Placebo test

- Data: non-defense related expenses
- Business experience matters \rightarrow not on other issues.

```
## Diff-in-means estimator: non-defense spending
mean(business$nondefspend_ch, na.rm = T) -
    mean(no.business$nondefspend_ch, na.rm = T)
```

```
## [1] -0.1239881
# Regression model
lm(nondefspend_ch ~ business, data = def.matt)
```

```
##
## Call:
## lm(formula = nondefspend_ch ~ business, data = def.matt)
##
## Coefficients:
## (Intercept) business
## 3.164 -0.124
```

Businessmen, politicians and spending

Non-defense spending

Wrapping up week 8

Summary:

- Prediction and causal inference.
- Binary predictors and linear regression models.
- Multiple predictors.
- Heterogeneous effects: interaction models.
- Causal inference with observational data.

Final project

- Data: choose one (7 total).
- Proposal: single document with study objectives and plan.
- Data report: focus on data set you selected.