Bush 631-603: Quantitative Methods
 Lecture 6 (02.22.2022): Prediction vol. I

Rotem Dvir

The Bush school of Government and Public Policy
Texas A\&M University

Spring 2022

What is today's plan?

- Why predictions?
- Tech basics - loops, conditional statements.
- Making predictions with data: elections, FP expenses, military aid.
- Using dates data.
- R work: loops, if $\}$, if $\}$ else $\}$, as.date(), line plots.
- Task II: Working with R

Predicting with data

- Social science research:
- Establish causality.
- The role of measurement.
- Predictions:
- Support for causal statements.
- Generate accurate predictions about potential outcomes.

Not the best. . . predictions!

Oh no...

Some more gems

Daily Mail - December 5, 2000

Some more gems

Well. . .

1995

The truth is no online database will replace your daily newspaper...

Clifford Stoll, Newsweek article entitled The Internet? Bah!

Some groundwork

Loops

- Useful to repeat the same operation multiple times.
- Efficient analysis tool.

How likely candidates are to win key states

As of Sunday, FiveThirtyEight's 2020 forecasted odds

Loops in R

- Run similar code chunk repeatedly.

- Elements of loop:
- i: counter (change as you like).
- X: Vector of ordered values for the counter.
- expression: set of expressions to run repeatedly.
- \{\}: curly braces define the beginning and end of a loop.

Loops in R

```
weeks <- c(1, 2, 3,4,5)
n <- length(weeks)
t <- rep(NA,n)
# loop counter
for (i in 1:n){
    t[i] <- weeks[i] * 2
    cat("I completed Swirl HW number", weeks[i], "in",
        t[i], "minutes", "\n")
}
## I completed Swirl HW number 1 in 2 minutes
## I completed Swirl HW number 2 in 4 minutes
## I completed Swirl HW number 3 in 6 minutes
## I completed Swirl HW number 4 in 8 minutes
## I completed Swirl HW number 5 in 10 minutes
```


Debugging a loop

- Check code for errors (prevalent in loops).
- Run loop (code) with simple example.
- Use Google to identify problem.
- More information and ideas \rightarrow Link

Conditional statements

- General form - implement code chunks based on logical expressions.

If statements

Syntax: if $(x=$ a condition $)$ \{set of commands $\}$
Run command(s) only if value if X is TRUE

```
weather <- "rain"
if (weather == "rain"){
    cat("I should take my umbrella")
}
```

\#\# I should take my umbrella

Flexible if statements

```
Using if(){} else {}
weather <- "sunny"
if (weather == "rain"){
    cat("I should take my umbrella")
} else {
    cat("I should wear my Aggie hat")
}
```

\#\# I should wear my Aggie hat

Complex conditional statements

Join conditional statements into a loop.

```
days <- 1:7
n <- length(days)
for (i in 1:n){
    x <- days[i]
    r <- x %% 2
    if (r == 0){
        cat("Day", x, "is even and I need my umbrella \n")
    } else {
        cat("Day", x, "is odd and I need my Aggie cap \n")
    }
}
## Day 1 is odd and I need my Aggie cap
## Day 2 is even and I need my umbrella
## Day 3 is odd and I need my Aggie cap
## Day 4 is even and I need my umbrella
## Day 5 is odd and I need my Aggie cap
## Day 6 is even and I need my umbrella
## Day 7 is odd and I need my Aggie cap
```


Conditional statements

Integrate conditional statements within a conditional statement.

```
output$tab <- function(){
## Season 2016: Tables
    if(input$year == 2016){
        data2016 <- mydata %>%
            filter(season == 2016)
    if (input$data == "QBR") {
        dat_tab <- data2016 %>%
            filter(QBR_rank < 16) %>%
            select(First, Last, QBR)
            dat_tab %>%
                knitr::kable("html") %>%
                kable_styling(font_size = 15, "striped", full_width = F, position = "center") %>%
                add_header_above(c("QBR: Top 15" = 3)) %>%
                scroll_box(height = "250px", width = "450px")
    } else
        if (inputSdata == "EPA") {
            dat_tab <- data2016 %>%
                filter(EPA_rank < 16) %>%
                select(First, Last, EPA_play) %>%
                arrange(-EPA_play)
```


Conditional statements

Caution:

- if() $\}$ else $\}$ are complex.
- Double check the curly braces for each statement.
- Use the automatic indentation.
- 'Space-out' your code.
- Add comments (using \#) to clearly mark each step.

Predictions

- Awesome research tool. . . with the right design.
- Predict: elections, economic trends, behavior, Superbowl winners, etc.

Elections winner

US electoral system

Electoral college

Plurality of votes in a state: "Winner-take-all"

Election predictions

Measurement problem:

- National vote vs. electoral votes.
- Bush - Gore (2000).
- Clinton - Trump (2016).

Electoral vote:

- Number of electors does not align with number of voters per state.
- Votes are "unaccounted".

A Prediction problem:

- Accurate forecast of each state winner.

Polls and election predictions

Data: 2016 elections (polls)

Poll prediction by states (using R loop)

```
poll.pred <- rep(NA, 51) # place holder
# get list of unique state names to iterate over
st.names <- unique(polls16$state)
# add labels to holder
names(poll.pred) <- st.names
for (i in 1:51) {
    state.data <- subset(polls16, subset = (state == st.names[i]))
    latest <- state.data$daysleft == min(state.data$daysleft)
    poll.pred[i] <- mean(state.data$margin[latest])
}
head(poll.pred)
```

\#\#	AK	AL	AR	AZ	CA	CO
\#\#	14.73	29.72	20.02	2.50	-23.00	-7.05

Errors in polling

Prediction error $=$ actual outcome - predicted outcome

```
errors <- pres16$margin - poll.pred
names(errors) <- st.names
mean(errors)
```


\#\# [1] 3.81

Root mean-square-error (RMSE): average magnitude of prediction error

$\operatorname{sqrt}\left(m e a n\left(\operatorname{errors}^{\wedge} 2\right)\right)$

\#\# [1] 9.6

Prediction challenges

Prediction of binary outcome variable \rightarrow classification problem
Wrong prediction \rightarrow misclassification:

1. true positive: predict Trump wins when he actually wins.
2. false positive: predict Trump wins when he actually loses.
3. true negative: predict Trump loses when he actually loses.
4. false negative: predict Trump loses when he actually wins.

2016 elections: misclassification rate was high: 9.8\% (5/51 states).

Predictions in INTA

Military expenditures:

- Increase arms? The security dilemma.
- Risky environment (Israel in Middle-east).

Study military expenses

Research questions:

1. How increase in expenditures drive conflicts?
2. Arms expansion and the probability of war?
3. Arms expenditure and preventive strike?

Does increase in spending (arms race) leads to conflict?

Arms and war??

Early findings (1960 study) \rightarrow not too promising

1. HAVE MOST WARS BEEN PRECEDED BY ARMS RACES? ARE ARMS RACES A REGENT INNOVATION?
Historians mention arms races only for 10 out of 84 wars that ended between 1820 and 1929. Those 10 wars are listed in Table 4.

Table 4
Dates of Beginnings and Sites of Wars
1914, World
1865, La Plata
1892, Armenia
1829, Caucasus; 1845, Punjab; 1859, Italy;
1878, Tekke Turkomans; 1892, Central
Africa; 1894, Madagascar; 1926, China

Arms and war??

Improved measurements; study dyads (1979)

> | war. ${ }^{5}$ This polynomial function shall be used to estimate the time rate of |
| :--- |
| change (delta) for each nation for the year prior to the dispute. The exist- |
| ence of an arms race prior to the dispute or war shall be determined by |
| obtaining the product of the national rates of change for each side, with |
| higher values representing "arms-race" dyads. By calculating national |

Arms and war??

Problems - case selection (remove world wars).

Improved methods and data (Sample 1998):

Probabilities of Escalation to War, 1816-1993,
Based on the Estimated Coefficients in Table 2
Baseline; all independent variables at 0 08
Mutual military buildup; all other independent variables at 0 21
High defense burden; all other independent variables at 0 18
Military buildup and defense burden; all other independent variables at 0 40
Dispute over issue of territory; all other independent variables at 0 16
Military buildup, defense burden, and territorial dispute; all other independent variables at 0 59
Military buildup, defense burden, territorial dispute, parity, transition, and rapid approach; nuclear at zero 69
Nuclear; all other independent variables at 0 02
Military buildup and nuclear; all other independent variables at 0 05
All variables at 1 25

Related research question

What drives the decision to increase military expenditures?

Arms race

Measure \rightarrow military expenditures

Military Expenditures by Country
US\$ billions, 2019

Military spending across the globe

Predicting military spending

Our data:

- 157 Countries
- Time frame: 1999-2019
- Measure: military spending as proportion of total gov't spending.

Why this measure?

- Reflect state's preferences.
- Trade-off: Guns vs. Butter.

Our predictions:

- Using 1999-2019 data to predict 2020 levels.
- Test predictions with actual data.

Military spending data

```
dim(mil_exp)
## [1] 157 25
head(mil_exp, n=8)
## # A tibble: 8 x 25
## Country Group1 Subgroup1 `1999` `2000` `2001` `2002` `2003` `2004` `2
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 Algeria Africa North Af~ 0.118 0.120 0.122 0.108 0.101 0.107 0.
## 2 Libya Africa North Af~ 0.115 0.103 0.0630 0.0524 0.0484 0.0490 0.
## 3 Morocco Africa North Af~ 0.145 0.0898 0.145 0.125 0.134 0.123 0.
## 4 Tunisia Africa North Af~ 0.0618 0.0614 0.0605 0.0590 0.0603 0.0591 0. 
## 5 Angola Africa Sub-Saha~ 0.274 0.129 0.108 0.0919 0.109 0.116 0.
## 6 Benin Africa Sub-Saha~ 0.0452 0.0264 0.0232 0.0407 0.0473 0.0506 0.
## 7 Botswana Africa Sub-Saha~ 0.0759 0.0817 0.0899 0.0900 0.0915 0.0848 0.
## 8 Burkina Faso Africa Sub-Saha~ 0.0576 0.0624 0.0588 0.0605 0.0610 0.0596 0.
## # ... with 15 more variables: 2006 <dbl>, 2007 <dbl>, 2008 <dbl>, 2009 <dbl>
## # 2010 <dbl>, 2011 <dbl>, 2012 <dbl>, 2013 <dbl>, 2014 <dbl>, 2015 <dbl>,
## # 2016 <dbl>, 2017 <dbl>, 2018 <dbl>, 2019 <dbl>, 2020 <dbl>
```


Reshaping the data

- Use the gather() function
- Increase the data size.
- Each case (country for us) has multiple observations (rows).

countries	population_in_million	gdp_percapita		\wedge	countries	time	value
A	100	2000	то		A	population_in_million	100
B	200	7000			B	population_in_million	200
C	120	15000		L	C	population_in_million	120
				Long	A	gdp_percapita	2000
*		\Rightarrow			B	gdp_percapita	7000
	wide			1	C	gdp_percapita	15000

Reshaping the data

gather() function: long-form data.

```
spend_long <- mil_exp2 %>%
    gather(year, exp, '1999':'2019',-Country, -Group1, -Subgroup1) %>%
    arrange(Country)
head(spend_long, n=9)
## # A tibble: 9 x 5
## Country Group1 Subgroup1 year exp
## <chr> <chr> <chr> <chr> <dbl>
## 1 Afghanistan Asia & Oceania South Asia 1999 NA
## 2 Afghanistan Asia & Oceania South Asia 2000 NA
## 3 Afghanistan Asia & Oceania South Asia 2001 NA
## 4 Afghanistan Asia & Oceania South Asia 2002 NA
## 5 Afghanistan Asia & Oceania South Asia 2003 NA
## 6 Afghanistan Asia & Oceania South Asia 2004 0.161
## 7 Afghanistan Asia & Oceania South Asia 2005 0.127
## 8 Afghanistan Asia & Oceania South Asia 2006 0.104
## 9 Afghanistan Asia & Oceania South Asia 2007 0.119
```


Predicting spending

Predict $2020 \rightarrow$ mean of spending (1999-2019)

Use loop to calculate means for all countries

```
## loop
pred.mean <- rep(NA,157)
c.names <- unique(spend_long$Country)
names(pred.mean) <- as.character(c.names)
for (i in 1:157){
    c.dat <- subset(spend_long, subset = (Country == c.names[i]))
    pred.mean[i] <- mean(c.dat$exp, na.rm = T)
}
```


Predicting spending for 2020

Afghanistan
7.693784e-02

Australia
$5.117444 \mathrm{e}-02$
Belgium
2.104063e-02

Brazil
$3.954679 \mathrm{e}-02$
Cameroon
$7.432152 \mathrm{e}-02$
China
8.147621e-02

Croatia
4.203798e-02

Ecuador
$7.900969 \mathrm{e}-02$
Ethiopia
1.032980e-01

Georgia
$1.093521 \mathrm{e}-01$
Guinea-Bissau
9.553127e-02

India
$9.692641 \mathrm{e}-02$
Italy
$3.099443 \mathrm{e}-02$
Korea, South
1.276501e-01

Lesotho
4.794950e-02

Malawi
$2.908423 \mathrm{e}-02$

Albania
4.803755e-02

Austria
1.621721e-02

Belize
3.481603e-02

Brunei
8.537055e-02

Canada
2.898024e-02

Colombia
1.133810e-01

Cyprus
4.971926e-02

Egypt
6.539493e-02

Fiji
5.669500e-02

Germany
2.686035e-02

Guyana
4.376836e-02 Indonesia
4.121770e-02 Jamaica
$2.671973 \mathrm{e}-02$
Kuwait
1.222232e-01

Liberia
2.041134e-02

Malaysia
6.375313e-02

Algeria
1.167886e-01

Azerbai jan
1.159260e-01

Benin
4.312747e-02 Bulgaria
5.727167e-02

Cape Verde Central African Rep.
$1.845547 \mathrm{e}-02 \quad 1.090412 \mathrm{e}-01$ Congo, Dem. Rep. Congo, Republic of
$9.082535 \mathrm{e}-02 \quad 8.326183 \mathrm{e}-02$
Denmark
2.517054e-02

Equatorial Guinea
5.624585e-02

France
3.599000e-02

Greece
$5.686649 \mathrm{e}-02$
Honduras
4.366182e-02

Iraq
6.366464e-02

Jordan
$1.535606 \mathrm{e}-01$
Laos
2.179216e-02

Lithuania
3.439832e-02

Malta
$1.457119 \mathrm{e}-02$

Argentina
2.865062e-02

Bangladesh
1.024893e-01

Bosnia-Herzegovina
3.023730e-02

Burundi
1.238733e-01

Chad
1.641743e-01

Costa Rica
$0.000000 \mathrm{e}+00$
Djibouti
1.513522e-01

Estonia
4.613709e-02

Gabon
7.089440e-02

Guatemala
$3.739819 \mathrm{e}-02$
Hungary
$2.511546 \mathrm{e}-02$
Ireland
$1.471538 \mathrm{e}-02$
Kazakhstan
4.722987e-02

Latvia
3.728258e-02 Luxembourg
1.313624e-02

Mauritania
$1.070985 \mathrm{e}-01$

Armenia
1.572688e-01

Belarus
3.055717e-01

Botswana
7.708387e-02

Cambodia
9.068995e-02

Chile
1.010081e-01

Côte d'Ivoire
7.179591e-02

Dominican Rep.
4.516247e-02
eSwatini
6.040772e-02

Gambia
3.735918e-02

Guinea
1.172825e-01

Iceland
$0.000000 \mathrm{e}+00$
Israel
1.420280e-01

Kenya
6.172174e-02

Lebanon
$1.416378 \mathrm{e}-01$
Madagascar
5.316299e-02

Mauritius
7.006463e-03

Good prediction?

Checking for errors:

```
# Calculate errors & assign country names
errors <- mil_exp$`2020` - pred.mean
names(errors) <- c.names
# Average error
mean(errors, na.rm = T)
## [1] -0.01210775
# RMSE
sqrt(mean(errors^2, na.rm = T))
## [1] 0.07380063
```


Prediction errors

How far off are we?

```
hist(errors, freq = FALSE)
abline(v = mean(errors, na.rm = T), lty = "dashed", col = "blue")
```

Histogram of errors

Accuracy of predictions

Find outlier predictions

Identify where we were off. . .

```
# Errors distribution
summary(n.dat$error)
```

$\# \#$	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
$\# \#$	-0.164364	-0.017092	-0.004715	-0.008734	0.000374	0.053107	10

\# Create variable for large outliers
n.dat\$large.inc <- NA
n.dat\$large.inc[n.dat\$error > 0.01] <- "Much More"
n.dat\$large.inc[n.dat\$error < -0.01] <- "Much Less"
\# Create subset of outliers: less than average
n.dat2 <- n.dat \%>\%
filter (large.inc == "Much Less") $\%>\%$
mutate (error $=$ error $* 100$) $\%>\%$
select(Group1, error) \%>\% arrange(desc(error))
tail(n.dat2, $n=9)$

\#\#	Group1	error
\#\# Chile	Americas	-3.785553
\#\# Nepal	Asia \& Oceania	-4.102959
\#\# Sierra Leone	Africa	-4.945523
\#\# Georgia	Europe	-5.375066
\#\# Burundi	Africa	-5.521676
\#\# Saudi Arabia	Middle East	-5.806989
\#\# Ethiopia	Africa	-7.119952
\#\# Sudan	Africa	-15.832405
\#\# Singapore	Asia \& Oceania	-16.436356

Time series and predicted value

Focus on big-5 spenders
Format data to long-form

```
dat3 <- n.dat %>%
    filter(Country == "Russia" | Country == "USA" |
    Country == "China" | Country == "Iran" | Country == "Israel") %>%
    select(-Subgroup1, -error, -large.inc)
dat3.l <- dat3 %>%
    gather(year, exp, '1999':'2020',-Country, -Group1, -pred.mean) %>%
    arrange(Country) %>%
    mutate(exp = round(exp*100,2))
```


Working with dates

Working with dates:

- Package \rightarrow library(lubridate)
- Define variables as dates and choose format
- We can calculate number of days between date variables

```
# Working with dates
arrive <- as.Date("2015-07-01")
today <- as.Date("2022-02-22")
# How long have I been in the US?
today - arrive
## Time difference of 2428 days
# Define dates in our expenditures data
dat3.1$year.f <- as.Date(dat3.1$year, format = "%Y")
dat3.1$year.f2 <- year(dat3.1$year.f)
```


Spending over time

$$
\text { Country } \bullet \text { China } \rightarrow \text { Iran } \rightarrow \text { Israel } \rightarrow \text { Russia } \rightarrow \text { USA }
$$

Spending over time (and predicted 2020 - the 'big 3')

$$
\text { Country } \rightarrow \text { China } \rightarrow-\text { Iran } \rightarrow \text { USA }
$$

US Military Aid

- Approximately \$11-12 Billion per year.
- FP tool with various goals:
- quid-pro-quo compliance with target government.
- Augment US national security.
- Require aid target cooperation.
- Outcomes? Not too promising...
- Reduce cooperation (2011).
- Reduce terrorism under certain conditions (2014).
- Limited in lowering civil conflict (2018).
- Great data resource: ForeignAssistance.gov (Link)

Aid data

- US Aid (1990-2006)

```
# Explore Military aid data
dim(mil_aid2)
## [1] 2643 34
summary(mil_aid2$militaryaid)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 0.0.00 0.20
```


Predicting US Military Aid

- Predict 2006 levels \rightarrow mean of aid (1990-2005)
- Use loop to calculate means for all countries

```
## Loop procedure
pred.aid <- rep(NA,168)
c.names <- unique(mil_aid2$country)
names(pred.aid) <- as.character(c.names)
for (i in 1:168){
    c.dat <- subset(mil_aid2, subset = (country == c.names[i]))
    pred.aid[i] <- mean(c.dat$militaryaid, na.rm = T)
}
pred.aid[pred.aid > 80]
\begin{tabular}{lrrrrrr} 
\#\# & Greece & Turkey & Iraq & Egypt & Jordan & Israel \\
\#\# & 196.29375 & 309.69375 & 179.95625 & 1595.04999 & 154.68125 & 2516.30624 \\
\#\# Afghanistan & Pakistan & & & & \\
\#\# & 115.82500 & 81.24375 & & & &
\end{tabular}
```


Predicting Aid

- Check our predictions

```
# Error vectors and plot
aid.error <- mil_aid3$militaryaid - pred.aid
names(aid.error) <- c.names
mean(aid.error, na.rm = T)
## [1] 5.719636
sqrt(mean(aid.error^2, na.rm = T))
## [1] 139.2933
```


Plot errors (outliers?)

```
hist(aid.error, freq = FALSE)
abline(v = mean(aid.error, na.rm = T), lty = "dashed", col = "red")
```

Histogram of aid.error

aid.error [aid.error > 1000]

\#\#	<NA>	<NA>	Afghanistan
\#\#	NA	NA	1691.175

US Military aid: Time trends

```
mil_aid4 <- mil_aid %>%
    filter(country == "Colombia" | country == "Egypt" | country == "Israel" | country == "Liberia")
ggplot(mil_aid4, aes(x = year, y = militaryaid)) +
    geom_line(aes(color = country)) +
    scale_color_discrete(name = "Recepient") +
    theme_bw() + xlab("Year") + ylab("Military Aid") + ggtitle("US Military Aid (1990-2006)") +
    theme(legend.position = "right",
    legend.background = element_rect(size = 0.5, linetype = "solid", colour = "black"))
```


Military and Economic aid: Afghanistan (1990-2006)

```
mil_aid %>%
    filter(country == "Afghanistan") %>%
    ggplot() +
    geom_line(aes(year,economicaid), color = "blue") + xlab("Year") +
    geom_line(aes(year,militaryaid), color = "red") + ylab("Aid Volume") +
    geom_text(aes(x = 2003, y = 1600, label = "Economy"), color = "blue") +
    geom_text(aes(x = 2004, y = 250, label = "Military"), color = "red") +
    geom_vline(aes(xintercept = 2001), linetype = "dashed", color = "black") +
    geom_text(aes(x = 2001, y = 500, label = "9/11"), color = "black") + theme_bw()
```


Military and Econ aid: Always tracking??

```
mil_aid %>%
    filter(country == "Georgia" | country == "Kenya") %>%
    ggplot(aes(group = country)) +
    geom_line(aes(year,economicaid), color = "blue") + xlab("Year") +
    geom_line(aes(year,militaryaid), color = "red") + ylab("Aid Volume") +
    geom_text(aes(x = 2000, y = 200, label = "Economy"), color = "blue") +
    geom_text(aes(x = 2000, y = 50, label = "Military"), color = "red") +
    facet_grid(country~.) + theme_bw()
```


Military and Economic aid (1990-2006)

- Checking for correlations

```
# Build data frame for means of aid types
type <- c("Military","Economic")
value <- c(mean(mil_aid$militaryaid,na.rm = T),
            mean(mil_aid$economicaid,na.rm = T))
aid_types <- data.frame(type,value)
aid_types
## type value
## 1 Military 33.08976
## 2 Economic 66.11048
# Correlation
cor(mil_aid$militaryaid, mil_aid$economicaid, use = "complete.obs")
## [1] 0.5559843
```


Plotting corrleation

```
ggplot(mil_aid, aes(x=economicaid, y=militaryaid)) +
    geom_point(color = "yellow") +
    xlab("Economic Aid") + ylab("Military Aid") +
    geom_text(aes(x =6000, y = 2000, label = "We have outliers!!"), color = "orange", size = 4.5) +
    theme_dark()
```


Plotting correlations: "Remove" outliers

```
ggplot(mil_aid, aes(x=logeconomicaid, y=logmilitaryaid)) +
    geom_point(color = "yellow") +
    geom_smooth(method = "lm") +
    xlab("Economic Aid") + ylab("Military Aid") +
    geom_text(aes(x =2.3, y = 7, label = "A Little better :)"), color = "skyblue", size = 4.5) +
    theme_dark()
```


Wrapping up week 6

Summary:

- Predictions...
- Using data to 'best- guess' some quantity.
- Repeated computations? Use Loops.
- Always check for prediction errors.
- Classification errors: false positive and false negative.
- Data over time
- US military aid data: predictions, errors and some insights

Almost done \downarrow

Task 2: R

- Explore INTA data.
- Answer all questions with R Markdown.
- Use revised template:
- Be organized.
- Add comments to your work (using \#).
- Add spaces using \vspace\{1em\}
- When plotting - remember your reader!

