Bush 631-603: Quantitative Methods Lecture 13 (04.19.2022): Uncertainty vol. III

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Spring 2022

What is today's plan?

- Calculating uncertainty: the full package.
- Linear regression model estimator.
- Assumptions for OLS estimators.
- Bivariate and multivariate models.
- R work: Im(), summary(Im())

Our data - our research interests

Making inferences from data to population

Statistical hypothesis testing

- Probabilistic proof by contradiction
- Assume the contrast to our expectations is not possible.
- Assume \rightarrow difference (sample and analyst) are zero.
- Incorrect? \rightarrow differences exist.
- Senior analyst may have been wrong.
- ▶ We can never **fully** reject a hypothesis (no 100% certainty).

Procedure for hypothesis tests

- Steps for testing:
 - 1. Define null and alternative hyps $(H_0; H_1)$.
 - 2. Select *test statistic* and level of test (α).
 - 3. Derive reference distribution.
 - 4. Calculate p-values.
 - 5. Make a decision: reject/retain.

Decision rule:

- Reject null if p-value is below α
- Otherwise **retain the null** or **fail to reject**.
- Common thresholds:
 - $p \ge 0.1$: "not statistically significant".
 - p < 0.05: "statistically significant".</p>
 - p < 0.01: "highly significant".</p>

Test errors

- p = 0.05 → extreme data only happen in 5% of repeated samples (if null is true).
- $\blacktriangleright \ \rightsquigarrow 5\%$ of time we reject null that is true!
- Types of errors:

	H ₀ True	H_0 False		
Retain H_0	Awesome!	Type II error		
Reject H_0	Type I error	Good stuff!		

Test errors

What does these errors mean?

One sample test

The z-statistic:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Or:

$$Z = \frac{observed - null}{SE}$$

- How many SEs away from the null guess is the sample mean?
- Small samples problem: uncertainty about \bar{X} distribution.
- Find t-statistic instead:

$$T=rac{ar{X}-\mu}{\hat{SE}}pprox t_{n-1}$$

Two sample tests

- Goal: learn about population difference in means.
- Compare differences b-w multiple groups: same testing procedures.
- Define:
 - Null PATE: $H_0: \mu_T \mu_C = 0$
 - Alt. PATE: $H_1: \mu_T \mu_C \neq 0$
 - Test statistic: diff-in-means estimator.
 - z-score for two sample z-test.
- Are the differences in sample means just random chance?

Two sample test

• Run a two sample t-test \rightarrow t.test()

```
##
## Welch Two Sample t-test
##
## data: exp.dat$cont_cor1[exp.dat$trt1 == 0] and exp.dat$cont_cor1[exp.dat$tr
## t = -13.697, df = 993.53, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -23.59653 -17.68267
## sample estimates:
## mean of x mean of y
## 1489.333 1509.973</pre>
```

What we did? and next...

- So far, we covered uncertainty in:
 - Sample proportions (Trump vs. the polls).
 - Sample means (Israel thermometer scores).
 - Differences in sample means (experimental data, leaders' type).
- What about our regression estimates?
- Much uncertainty about them too!

Least squared

- ► Assumption: model ~→ Data generation process (DGS)
- **Parameters/coefficients** (α, β) : true values unknown.
- Use data to estimate $\alpha, \beta \Longrightarrow \hat{\alpha}, \hat{\beta}$
- Predictions:
 - ▶ Use the *regression line*.
 - ► Calculate *fitted value* (≠ observed value)

$$\hat{Y} = \hat{\alpha} + \hat{\beta} * x$$

Linear model elements

 Residual/prediction error: the difference b-w fitted and observed values.

• Real error is unknown $\Rightarrow \hat{\epsilon}$

$$\hat{\epsilon} = Y - \hat{Y}$$

Linear model estimation

Least squared:

- A method to estimate the regression line.
- Use data (values of Y & X_i).
- 'Select' $\hat{\alpha}, \hat{\beta}$ to minimize SSR.

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta} * X_{i})^{2}$$

Linear regression in R

Fit the model

- Syntax: lm(Y ~ x, data = mydata)
- ► Y = dependent variable; x = independent variable(s).

How does it look like?

Linear models in RCT

Binary dependent variable:

- Slope coefficient $(\beta) = \text{diff-in-means estimator.}$
- $\hat{\beta}$: estimated average treatment effect.
- Why works?
 - $\blacktriangleright \ \ \mathsf{Randomization} \rightarrow \mathsf{causal} \ \ \mathsf{interpretation}$
 - Slope (β): the average change in Y when X increases by 1 unit.

When X is binary:

- Treatment: yes or no.
- X change by 1 unit \rightarrow no to yes.
- Y changes as well (measured in percentages).

Building linear models

- Leader background and nuclear technology pursuit (2015)
- Rebel or not?
- Our model \rightarrow rebel exp. & nukes technology.

•
$$Y_i = \beta_0 + \beta_1 * RebelExp_i + \epsilon_i$$

• $P(Nukes) = rebel experience and <math>\epsilon$ (error).

Uncertainty in regression

- Quantify uncertainty in linear models
- Model parameters estimators
- What estimator? **least squared**.

Least squared estimator

We 'plug-in' data and get estimates.

Estimators values are uncertain.

Uncertainty of least squared estimators

 Data: Relationship between strength of property rights and GDP.

Simulation Again?

Sample 30 countries and calculate Im(GDP ~ Property.rights)

Simulation Again?

Multiple iterations of the model within the data.

OLS sampling distributions

• Variations of intercept $(\hat{\beta}_0)$ and slope $(\hat{\beta}_1)$

Least squared estimator

- Uncertainty in *least squared* estimator:
 - Generate reference distribution.
 - Calculate SEs.
 - Construct 95% Cls.
 - Run hypotheses tests.
 - Results are 'statistically significant', or not.

Assumptions

Assumptions for regression estimates:

(1) **Exogeneity**: mean of ϵ_i does not depend on X_i

 $E(\epsilon_i|X_i)=E(\epsilon_i)=0$

(2) Homoskedasticity: variance of ϵ_i does not depend on X_i

$$V(\epsilon_i|X_i) = V(\epsilon_i) = \sigma^2$$

Problem of exogenous factors

- Confounders between X_i and Y_i
- Factors in ϵ_i that are related to X_i
- Why?
- Business background $(X_i) \rightarrow$ defense spending (Y_i)
- Socioeconomic background $\rightarrow \epsilon_i$
- \blacktriangleright But Socioeconomic background \rightarrow Business experience, so. . .
- Is Y_i due to business experience?

Problem of exogenous factors

- ► RCTs → no exogeneity problem.
- Randomized treatments!
- Severe issue for observational studies.
- Rebel background \rightarrow nuclear weapons pursuit.
- Perhaps more conflicts \rightarrow pursue advanced technology.

Homoskedas... what?

▶ When spread of *Y_i* depends on *X_i*

OLS properties

$$Y_i = \beta_0 + \beta_1 * X_i + \epsilon_i$$

- Our estimates: $\hat{\beta}_0, \hat{\beta}_1$ are r.v.s.
- Equal to true value? (population parameters)
- How spread are they around their center?
- Estimate the SE $\rightarrow \hat{SE}(\hat{\beta}_1)$
- Next? construct Cls...
- Run hypotheses tests.

Putting everything together

- Hypotheses:
 - $H_0: \beta_1 = 0$
 - $H_a: \beta_1 \neq 0$
- Our estimators: $\hat{\beta}_0, \hat{\beta}_1$
- SE and Cls:
 - $\hat{\beta}_0 \pm 1.96 * \hat{SE}(\hat{\beta}_0)$ • $\hat{\beta}_1 \pm 1.96 * \hat{SE}(\hat{\beta}_1)$
- Hypotheses test:

• Test statistic:
$$\frac{\hat{\beta}_1 - \hat{\beta}_1^*}{\hat{SE}(\hat{\beta}_1)} \sim N(0,1)$$

• $\hat{\beta}_1$ is statistically significant if p < 0.05.

Now with data

Rebel experience and pursuit of nuclear tech (2015)

head(nukes, n=9)

##	#	# A tibble: 9 x 76								
##		ccode	idacr	year	leadid30	leadername	startdate	inday	inmonth	inyear
##		<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>	<date></date>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	2	USA	1945	A2.9-43	Roosevelt, F.	1933-03-04	4	3	1933
##	2	2	USA	1945	A2.9-46	Truman	1945-04-12	12	4	1945
##	3	2	USA	1946	A2.9-46	Truman	1945-04-12	12	4	1945
##	4	2	USA	1947	A2.9-46	Truman	1945-04-12	12	4	1945
##	5	2	USA	1948	A2.9-46	Truman	1945-04-12	12	4	1945
##	6	2	USA	1949	A2.9-46	Truman	1945-04-12	12	4	1945
##	7	2	USA	1950	A2.9-46	Truman	1945-04-12	12	4	1945
##	8	2	USA	1951	A2.9-46	Truman	1945-04-12	12	4	1945
##	9	2	USA	1952	A2.9-46	Truman	1945-04-12	12	4	1945
##	<pre># with 67 more variables: startyearlyobs <date>, enddate <date>,</date></date></pre>							,		
##	# # outday <dbl>, outmonth <dbl>, outyear <dbl>, yearlyduration <dbl>,</dbl></dbl></dbl></dbl>							>,		
##	<pre># entry <dbl+lbl>, exit <dbl+lbl>, pursuit <dbl>, initiation <dbl>,</dbl></dbl></dbl+lbl></dbl+lbl></pre>							۰,		
##	#	<pre># explore <dbl>, bombprgm <dbl>, pursuitjg <dbl>, pursuitsw <dbl>,</dbl></dbl></dbl></dbl></pre>							,	
##	#	<pre># rebel <dbl>, milservice <dbl>, jcrevolutionary <dbl>,</dbl></dbl></dbl></pre>								

revolutionaryleader <dbl>, irregular <dbl>, fiveyear <dbl>, polity2 <dbl
total <dbl>, spally <dbl>, NCA67 <dbl>, gdpcap <dbl>, lngdpcap <dbl>, ...

```
Rebels and Nukes (2015)
```

OLS regression models in R

lm(pursuit ~ rebel, data = nukes)

```
##
## Call:
## lm(formula = pursuit ~ rebel, data = nukes)
##
## Coefficients:
## (Intercept) rebel
## 0.01051 0.03767
```

Rebels and Nukes (2015)

```
    Simple/bivariate regression
```

```
summary(lm(pursuit ~ rebel, data = nukes))
##
## Call:
## lm(formula = pursuit ~ rebel, data = nukes)
##
## Residuals:
##
                 10 Median 30
       Min
                                          Max
## -0.04819 -0.04819 -0.01051 -0.01051 0.98949
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.010513 0.002295 4.582 4.68e-06 ***
## rebel 0.037673 0.003513 10.725 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1598 on 8460 degrees of freedom
##
    (390 observations deleted due to missingness)
## Multiple R-squared: 0.01341, Adjusted R-squared: 0.0133
## F-statistic: 115 on 1 and 8460 DF, p-value: < 2.2e-16
```

Rebels and Nukes (2015)

Multivariate regression: account for confounders

summary(lm(pursuit ~ rebel + milservice + polity2, data = nukes)) ## ## Call: ## lm(formula = pursuit ~ rebel + milservice + politv2, data = nukes) ## ## Residuals: ## Min 10 Median 30 Max ## -0.06587 -0.04408 -0.02544 -0.01020 0.99682 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.0073899 0.0027782 2.660 0.00783 ** ## rebel 0.0320096 0.0044238 7.236 5.08e-13 *** ## milservice 0.0217914 0.0045106 4.831 1.38e-06 *** ## polity2 0.0004679 0.0002801 1.670 0.09489. ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.1672 on 7684 degrees of freedom ## (1164 observations deleted due to missingness) ## Multiple R-squared: 0.01596, Adjusted R-squared: 0.01558 ## F-statistic: 41.54 on 3 and 7684 DF, p-value: < 2.2e-16

OLS coefficient interpretation

Rebel experience and nuclear technology (2015)

OLS Multivariate regression

Remember: correlation does not mean causation.

- Multiple confounders \rightarrow same process:
 - Cls are constructed the same for all $\hat{\beta}_j$.
 - Hypothesis tests also run the same for all $\hat{\beta}_j$.
 - p-values have the same interpretation.
- Interpretation of $\hat{\beta}_j$:
 - ► A change in Y_i is associated with a one-unit increase in X_i when...
 - All other variables are held constant (at mean value, usually).

OLS regression models: FP research

Joint military exercises and conflict (2021)

📼 🛟 📟

USS Portland (LPD 27) participated in a passing exercise with Israeli corvette INS Hanit today, demonstrating mutual commitment to regional maritime security and stability.

11:00 AM · Nov 15, 2021 · Twitter Web Ap

41 Retweets 6 Quote Tweets 169 Likes

Flashpoints

China, Russia launch joint naval drills in Russian Far East

By The Associated Press

Friday, Oct 15

😚 🎔 🤠 in 🔗 🔤

The Liaoning aircraft carrier is accompanied by frigates and submarines on April 12, 2018, conducting exercises in the South China Sea. (Li Gang/Xinhua via AP)

- Under what conditions violence is more likely? who will initiate?
- Outcome conditioned by alliance partnership.
- Use two-stage model:
 - 1. Selection into conflict.
 - 2. Effects of JMEs.
- Data: directed dyad-year (1973-2003).

JME and military conflict

	Tai	Targets		Participants		
	Model I:	Model 2:	Model 3:	Model 4:		
JME	-0.311***		-0.573***			
•	(0.100)		(0.101)			
Non-Ally JME	. ,	-0.050	. ,	-0.148		
		(0.146)		(0.141)		
Ally IME		_0.443 ^{****}		_0.823 ^{***}		
		(0.117)		(0.124)		
Alliances	0.013*	0.016**	-0.009	_0.004 [´]		
	(0.007)	(0.007)	(0.008)	(0.008)		
Joint Democracy	_0.753 ^{***}	_0.745 ^{***}	-0.730***	_0.720 ^{***}		
• •	(0.092)	(0.092)	(0.089)	(0.089)		
CINC	9.042 ***	8.901 ***	Ì0.800 ^{***}	Ì0.597 ^{***}		
	(1.114)	(1.114)	(1.063)	(1.063)		
UNGA	-0.055	-0.050	-0.047	_0.04 l		
	(0.045)	(0.045)	(0.044)	(0.044)		
Trade	0.00001	0.00001	0.00001	0.00001		
	(0.00000)	(0.00000)	(0.00000)	(0.00000)		
Lagged DV	6.631*** [´]	6.623***	6.171 ***	6.159***		
	(0.092)	(0.092)	(0.092)	(0.092)		
Constant	_6.970 ^{***}	_6.984 ^{***}	-6.945 ^{***}	_6.967 ^{***}		
	(0.272)	(0.272)	(0.271)	(0.271)		
Ν	541,920	541,920	541,920	541,920		
AIC	7,757.394	7,753.953	8,415.870	8,402.368		
Log Likelihood	-3,839.697	-3,836.977	-4,168.935	-4,161.184		

Table 2. Main Results for the Effects of JMEs and Alliances on Conflict Escalation.

Note: Coefficients Represent Logistic Regression Coefficients. ${}^{*}p < 0.1; {}^{**}p < 0.05; {}^{***}p < 0.01.$

- How sanctions affect stock markets' in targeted countries (2021).
- Imposing costs on stock market \rightarrow behavior change.
- Account for types of sanctions.
- The cumulative effects of sanctions over time.
- Data: monthly stock market values for 66 countries (1990-2005)

- Types of sanctions matter:
 - Import: restrict access to global markets and reduce firm revenues.
 - Also harm exporters: investment shifts away from losing firms.
 - Export: limits on exports thus loss of hard currency.
 - Less efficient as import firms make-up for lost capital and goods.
- Example: Iraqi oil boycott (1990).
- Cumulative sanctions regime:
 - More is better.
 - But decreasing marginal effect.
 - Initial sanctions are more useful
 - Target adjusts to additional restrictions.

- Empirical analysis:
 - OLS regression models.
 - ADL: account for time lags.
- Results:
 - Negative effect on stocks.
 - Type matters, as well as number of sanctions.
 - Sender state also matters.
- Models 1&2: full and reduced set of controls.
- Models 3-5: sanctions types.
- Models 6&7: Comparing G20 to non-G20 countries.

International Aid and civilian casualties

Apr 13, 2016

Balochistan: Pakistan Army Kills Over 35 Civilians and Carries Out Mass Abductions

International Aid and civilian casualties

- Are civilians facing risks due to aid distribution?
- Two mechanisms:
 - 1. Persuasion: reduce incentives to target civilians (military).
 - 2. Predation: adverse incentives for resource capturing and extended collective violence (development).
- ▶ Data: military and ODA flows in 135 countries (1989-2011).

Military and development aid flows

Variables	1(a) U.S. military aid	1(b) Development aid	1(c) Full model	1(d) Lagged DV	1(e) Excluding outliers
OSV (t-1)				0.000**	0.0148**
				(0.000)	(0.00666)
U.S. military aid (logged, lagged)	-0.338***		-0.368***	-0.348	-0.187**
	(0.109)		(0.097)	(0.101)	(0.090)
Development aid (logged, lagged)		0.237**	0.366***	0.371	0.269**
		(0.117)	(0.135)	(0.136)	(0.130)
State strength	-0.000	-0.002***	0.000	-0.000	0.000
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Polity2	-0.256	-0.117*	-0.167**	-0.151*	-0.009
	(0.075)	(0.069)	(0.079)	(0.079)	(0.045)
Rebel OSV (lag)	-0.000	0.001	-0.000	-0.001	-0.001
	(0.001)	(0.002)	(0.000)	(0.001)	(0.001)
Intrastate conflict	4.717***	4.858	5.230	5.463	3.653
	(0.646)	(0.634)	(0.709)	(0.816)	(0.621)
Trade openness	0.000	0.000	0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Previous regime change	2.107***	2.071***	2.036***	2.002	2.045***
	(0.380)	(0.520)	(0.359)	(0.368)	(0.382)
Oil production	-0.299***	-0.237***	-0.223**	-0.235	-0.109
	(0.087)	(0.074)	(0.091)	(0.090)	(0.097)
Ethnic exclusion	0.754***	0.776	0.765	0.724	0.263
	(0.210)	(0.202)	(0.215)	(0.224)	(0.172)
Ethnic fractionalization	0.624	0.362	-0.201	-0.163	-0.286
	(0.799)	(0.852)	(0.814)	(0.817)	(0.901)
Constant	4.112**	-2.553***	2.301	1.965	-0.300
	(1.759)	(0.975)	(1.791)	(1.831)	(1.523)
Observations	2,032	2,791	2,032	2,032	2,005

Note. Robust standard errors in parentheses.

*****p* < .01, ***p* < .05, **p* < .1

What to do with reg models?

Regression models:

- Useful tool to assess causality.
- Pack a lot of information.
- Can be hard to interpret.
- So, what to do?
 - Substantive results.
 - Predictions!!
 - Sub-groups and effects by types.

Show meaningful results!

• Predictions \rightarrow quantity of interest

Figure 3. Predicted probability of *Escalation* as a function of *Ally JME*, with 95 percent confidence intervals. Results obtained from a Heckman selection model and are conditional upon conflict onset. (A) Targets. (B) Participants.

Predicting sanction types effectiveness

- Counter-terrorism tool since early 2000's.
- Precision and minimum collateral damage.
- Drone strikes \rightarrow not so surgical.
- Effect on population in targeted area (Christia et. al. 2020).
- Disrupt daily lives.
- Setting: Yemen (2010-2012).
- Measure: volume of cell phone calls.

Substantive effects of treatment (drone strikes)

Wrapping up Week 13

Summary:

- Testing uncertainty: the full package.
- Linear regression model estimator.
- Assumptions for OLS estimators.
- Bivariate and multivariate models.
- Interpretation of β coefficient.
- Reading a regression table.