Bush 631-603: Quantitative Methods

Lecture 11 (04.05.2022): Uncertainty vol. I

Rotem Dvir

The Bush school of Government and Public Policy
Texas A\&M University

Spring 2022

What is today's plan?

- Calculating uncertainty: detecting 'real' findings.
- From r.v.s. to estimators.
- Types of estimators: data, surveys, experiments.
- Simulations.
- Confidence intervals
- R work: table(), loops, simulations, plots.

Final project

Data report:

- Succinct description of topic and importance.
- What are my central arguments?
- No coding.
- Clear variable names.
- Variable values.

Visuals?

- Labels (axis, ticks).
- Title.
- Attention grabbing - use colors and add relevant text.
- Short description of main implications/findings.

Useful visuals

What looks better?

Useful visuals

Or this...

We have findings!!!

- Data patters are systematic? Or noise?
- Our estimates \rightarrow real relationship or random?
- Using probability calculations.

Events to numbers

- Random variables: map outcomes to numbers.
- Assess quantities in population \rightarrow we cannot.
- Use sample: r.v.s and the values of concepts.
- Define a random variable X :
- $X=1$ if 'random' person supports president, 0 otherwise.
- $\bar{X}=\mathrm{E}[\bar{X}]=\mu$??
- Yes!!
- Large samples to the rescue.

Our data - our research interests

- Making inferences from data to population

Uncertainty

- Research questions:

1. President's gender and FP actions?
2. Regime type and frequency of terrorism?
3. Regional trade zone and countries trade balance?

- Treatment / Factor has an effect:
- Women are more aggressive in defense spending and public threats.
- Democratic regimes experience more terror incidents.
- Regional trade zone increased the trade balance with neighbors.
- Are these effects real or just noise?

Uncertainty in data: US and WW II

Pearl Harbor (December 7, 1941)
"Signals to noise ratio"
(Wohlstetter 1962)
Diplomatic .vs. military intelligence (Kahn, 1991)

Uncertainty in data: 9/11 Intelligence failure

```
MEMORANDUM FOR;
FROPA:
OFFICE:
SUBJECT:
Re: Khalid Al-Mihdhar
```

Reference:

TO:
FROM:
OFFICE:
DATE:
08/21/2001 04:05:02 PM .
SUBJECT: 园Re: Khalid Al-Mihdhar
WHAT?:?? Same passport number? How interesting. I know his fellow travelers made one or two trips to the US in the same January time frame, yes? Probably would be useuff to memorialize the US visits of the party in a cable...
as I was reviewing all the cables on Khalid Al-Mihdhdar, I noticed he had a U.S. Visa in his passport. I asked INS to check and they just came back and said he entered the U.S. on 15 January 2000 and listed the Los Angeles as his destination. He departed the U.S. on 10 June 2000. I
looked through traffic and could not find anything else.
I'll be sending \qquad to FBI to pass what we know of Khalid AI-Mihdhar and that he entered the U.S. on 15 January. Maybe there is something they can do - perhaps run his name by Ressam? I will be here in the morning, and will then be meeting with \qquad in the early afternoon to talk about the U.S.S. Cole and will give her a head's up. Let me know if you need me to do anything.

Estimation

- Quantity of interest in population.
- Point estimation \rightarrow a 'best guess'.
- Many possible point estimators:
- Population mean (μ): elections turnout.
- 'Special population' mean (μ): likelihood of joining international treaty.
- Variance of a r.v. $\left(\sigma^{2}\right)$: variation in support for sanctioning China/Russia.
- Population ATE $\left(\mu_{1}-\mu_{0}\right)$: difference b -w treatment and control groups.

Estimation

Estimator θ

AUKUS PARTNERSHIP

学楽齐长

The UK，the United States and Australia have agreed a landmark defence and security partnership that will defend our shared interests around the world

How to estimate public opinion?

Iranians More Likely to Approve of JCPOA
As you may know, in July 2015, Iran and the P5+1 countries reached a comprehensive
agreement in regard to Iran's nuclear program, which is also known as the JCPOA. In agreement in regard to Ir ran's nuclear program, which is also known as the JCPOA. In
general and based on what you know about the JCPOA, to what degree do you approve general and based on what you know about the
or disapprove of this agreement? Do you: (\%)

Democrats and Republicans Diverge on Iran Agreement
Based on what you know, do you think the United States should or should not participate in the following international agreements? (\% participate) The agreement that lifts some international economic sanctions against Iran in exchange for strict limits on its nuclear weapons

- Random sample of respondents.

Estimating with public samples

- Assume: $X_{1} \ldots X_{n}$ iid Bernoulli distributed random variables.
- Proportion of support for deal $\rightarrow \mathrm{p}$.
- An estimate: one realization of estimator (random variables right??)
- Estimate:

$$
\hat{\theta}=\bar{X}_{n} \rightarrow \text { population } \mathrm{p}
$$

Still, an estimation...

- Is our estimate good?
- Estimation error: difference with 'true value'.
- Error $=\bar{X}_{n}-p$
- p is unknown, now what?
- Calculate average magnitude of estimation error.
- Hypothetical repetition of sampling:
- Multiple estimate values ($\hat{\theta}$)
- Multiple estimation error values.

Estimation

- Repetition \rightarrow sampling distribution of $\hat{\theta}$
- Estimation error / bias using expectations
- bias $=E($ est.Error $)=E($ Estimate - truth $)=E\left(\bar{X}_{n}\right)-p=$ $p-p=0$
- Unbiasedness: Sample proportion is on average equal to the population proportion.
- Accuracy over multiple samples (not a single-shot survey)
- Estimator is unbiased

Estimators in experiments

- Treatment(s) and control groups.
- Estimator \rightarrow diff-in-means.
- Sample Average Treatment Effect (SATE):

$$
\text { SATE }=\frac{1}{n} * \sum_{i=1}^{n}\left[Y_{i}(1)-Y_{i}(0)\right]
$$

Diff-in-means estimator

- Random sampling of population.
- Random assignment into treatment(s).
- Population Average Treatment Effect (PATE)
- $P A T E=E[Y(1)-Y(0)]$
- Diff-in-means estimator is unbiased

Unbiased estimator

- Monte-Carlo simulations

```
# Create Sample, Control and treatment groups (means and SDs)
n <- 500
mu0 <- 0
sd0 <- 1
mu1 <- 1
sd1 <- 1
# Create sampling distributions
y0 <- rnorm(n, mean = mu0, sd = sd0)
head(y0)
## [1] 0.91455560 0.58102736 0.07004449 -0.50854551 1.21976759 0.40414614
y1 <- rnorm(n, mean = mu1, sd = sd1)
# calculate diff-in-means (SATE)
tau <- y1 - y0
head(tau)
## [1] -2.4004159 -1.0897941 1.5491812 2.8700703 -0.9363582 0.5885389
SATE <- mean(tau)
SATE
## [1] 1.037859
```


Increasing the sample

- Simulate \& randomly assign treatment

```
# Repeat
sims <- 5000
diff.means <- rep(NA,sims)
for (i in 1:sims){
    treat <- sample(c(rep(1, n/2), rep(0, n/2)), size = n, replace = FALSE)
    diff.means[i] <- mean(y1[treat == 1] - mean(y0[treat == 0]))
}
est.error <- diff.means - SATE
summary(est.error)
\#\# Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.2258105 -0.0415511 -0.0003041 -0.0005721 0.0404769 0.2472954
```


SATE estimator (large sample simulation)

```
hist(diff.means, freq = FALSE)
abline(v=SATE, col = "blue")
```

Histogram of diff.means

Estimator distribution

- Calculate variation with SD (estimator)

```
# SD of estimator
sd(diff.means)
## [1] 0.06085963
sqrt(mean((diff.means - SATE) 2))
```

\#\# [1] 0.06085623

- Calculate SD - only with a simulation.
- Reality \rightarrow one sample, SD is unknown.

SD of sample

- Standard error: estimated degree of deviation from expected value
- Variability of our (single!) sample

```
    - }\sqrt{}{\hat{V}(\hat{Y})}=\sqrt{}{\frac{\hat{Y}*(1-\overline{Y})}{n}
# Simulate and add SE calculate
sims2 <- 5000
diff.means2 <- rep(NA,sims)
diff.se <- rep(NA, sims)
for (i in 1:sims){
    YO <- rnorm(n, mean = mu0, sd = sdO)
    Y1 <- rnorm(n, mean = mu1, sd = sd1)
    treat <- sample(c(rep(1, n/2), rep (0, n/2)), size = n, replace = FALSE)
    diff.means2[i] <- mean(Y1[treat == 1] - mean(YO[treat == 0]))
    diff.se[i] <- sqrt(var(Y1[treat == 1])/(n/2) + var(YO[treat == 0])/(n/2))
}
sd(diff.means2)
## [1] 0.08914774
mean(diff.se)
```


Broader approach to estimator distribution

- Quantities beyond means and SD.

Confidence Intervals

- Range of true values of estimator.
- Range of plausible values.
- Rest on assuming repeated sampling.

Chance errors intervals

- Normal distribution empirical rule.
- 95% of values within 2 SD, in sample $\rightarrow 2$ SEs.
- Range of possible values $\rightsquigarrow \pm 1.96$ SEs

BYOCls

- Constructing confidence intervals.
- (1) What confidence level?
- Conventional: 95\%.
- Defined using $\alpha(0-1)=$?
- (2) CI: $100 *(1-\alpha) \%=\bar{Y} \pm z_{\alpha / 2} * S E$
- $\alpha=0.05 \rightarrow 95 \% \mathrm{Cl}$.

Confidence Intervals

- Formal CI:

$$
C I(\alpha)=\left(\bar{X}_{n}-z_{\alpha / 2} * S E, \bar{X}_{n}+z_{\alpha / 2} * S E\right)
$$

- Critical value $=(1-\alpha / 2)$

α	Confidence level	Critical value $z_{\alpha / 2}$	Rexpression
0.01	99%	2.58	qnorm (0.995)
0.05	95%	1.96	qnorm (0.975)
0.1	90%	1.64	qnorm (0.95)

Confidence intervals

- Finding the critical values
- qnorm() function: define lower.tail $=$ FALSE

```
# find critical values
qnorm(0.05, lower.tail = FALSE)
## [1] 1.644854
qnorm(0.025, lower.tail = FALSE)
## [1] 1.959964
qnorm(0.005, lower.tail = FALSE)
## [1] 2.575829
```


Cls in R

- Cls for our JCPOA survey

```
# Sample, Mean support and SE
n <- 2000
x.bar <- 0.6
Iran.se <- sqrt(x.bar * (1-x.bar)/n)
Iran.se
## [1] 0.01095445
# CIs
c(x.bar - qnorm(0.995) * Iran.se, x.bar + qnorm(0.995) * Iran.se) #99%
## [1] 0.5717832 0.6282168
c(x.bar - qnorm(0.975) * Iran.se, x.bar + qnorm(0.975) * Iran.se) #95%
## [1] 0.5785297 0.6214703
c(x.bar - qnorm(0.95) * Iran.se, x.bar + qnorm(0.95) * Iran.se) #90%
## [1] 0.5819815 0.6180185
```


Interpretation

- How to interpret Cls?
- $\mathrm{NO} \rightarrow 95 \%$ chance true value is within the interval.
- Why? Estimator is unknown (value is $0 / 1$).
- YES \rightarrow Interval contains true value 95% of the times in repeated random samples.
- Not the Wait What? pic again right???
- One more time:

Interval contains the true value 95% of the times in repeated random samples

Simulate Cls

- Policy: Global Co_{2} emissions reduction
- Sample $=1500$ respondents
- $\mathrm{p}=0.4$ (assumed support)
- Calculate 95% Cls in multiple samples

Simulate Cls

- How many overlap with 'true' support?

Trial

Polls: the 'fine print'

Margin of error

Margin of error

- MOE: half-width of a $95 \% \mathrm{CI}$.
- JCPOA sample proportion of support $=0.6$
- JCPOA sample MOE $= \pm 3 \%$
- JCPOA 95\% CI: [57\%,63\%]

Margin of error

$$
M O E= \pm z_{0.025} * S E \approx \pm 1.96 * \sqrt{\frac{\bar{X}_{n} *\left(1-\bar{X}_{n}\right)}{n}}
$$

- What is the minimum sample size?
- Popular stage in research design.
- Conduct before fielding the survey.

MOE and Sample size

- Calculate multiple proportions of support.
- Define your MOE: $1 \%, 2 \%, 3 \%, 5 \%$
- Possible sample sizes

```
# Define MOEs
moe <- c(0.01, 0.02, 0.03, 0.05)
# Define vector of proportion of support (0-100 by 1%)
prop <- seq(from = 0.01, to = 0.99, by = 0.01)
# Using MOE and proportion for possible sample sizes
num <- 1.96^2 * prop * (1-prop) / moe[1]^2
head(num, n=10)
## [1] 380.3184 752.9536 1117.9056 1475.1744 1824.7600 2166.6624 2500.8816
## [8] 2827.4176 3146.2704 3457.4400
```


MOE and Sample size

- Plotting our analysis
- CLT, SE and sample size...

Cls \& Experiments

- Quantify uncertainty for causal effect analysis.
- JCPOA support among Americans \rightarrow good!
- Variations of JCPOA support among groups \rightarrow even better!
- Men \longleftrightarrow Women.
- Young \longleftrightarrow Old.
- Vets (military) \longleftrightarrow no military background.
- Estimator: population ATE
- $\mu_{T}-\mu_{C}$

Expanding JCPOA research

- Design an experiment
- Treatment: details about treaty.
- Outcomes measure: level of support based on knowledge of details.
- $\hat{A T} E=\hat{X_{T}}-\hat{X_{C}}$
- $\hat{X}_{T} \rightarrow$ treatment group mean $\left(E\left[\mu_{T}\right]\right)$
- $\hat{X}_{C} \rightarrow$ control group mean $\left(E\left[\mu_{C}\right]\right)$

Let's reduce plastics

- Environmental policy: 'fighting-back' against plastic bags.
- Policy, main aspects - financial incentives:

1. Financial incentives: cash back.
2. Financial incentives: fee for plastic bags.

- Define outcome: $X_{i}=1$ if support policy, 0 otherwise.
- Sample mean (treatment), $\bar{X}_{T}=0.43$
- Sample mean (control), $\overline{X_{T}}=0.32$

$$
\hat{A T} E=\hat{X}_{T}-\hat{X}_{C}=0.11
$$

Simulating policy support

- Sample diff-in-means on average equal to population diff-in-means
- Still, some variation

```
# Simulate our experiment in population
xt.sims <- rbinom(1000, size = 1000, prob = 0.43) / 1000
head(xt.sims)
## [1] 0.421 0.435 0.423 0.416 0.429 0.436
xc.sims <- rbinom(1000, size = 1000, prob = 0.32) / 1000
head(xc.sims)
## [1] 0.314 0.323 0.328 0.311 0.319 0.316
# Mean
mean(xt.sims-xc.sims)
## [1] 0.110497
```


ATE distribution

- How our $A \hat{T} E \approx 0.11$ looks like?

```
# Plot with tidyverse
hp <- data.frame(mn = (xt.sims-xc.sims))
ggplot(hp, aes(mn)) +
    geom_histogram(fill="#D6D7FF", color="black", alpha=0.9) +
    geom_vline(xintercept = mean(hp$mn), color = "blue", linetype = "dashed", size = 1.5) +
    xlab("Estimated ATEs") + ylab("") + ggtitle("ATE Sampling Distribution") +
    theme_bw()
```

ATE Sampling Distribution

Simulating policy support

- $\hat{A T E} \approx 0.11 \rightarrow$ makes a difference?
- Use SEs to learn of variation of estimator

```
# Calculate SE
x.se <- sqrt((0.43*0.57)/1000 + (0.32*0.68)/1100)
x.se
## [1] 0.02104562
# 95% CIs for meaningful results
c(0.43 - qnorm(0.975) * x.se, 0.43 + qnorm(0.975) * x.se)
## [1] 0.3887513 0.4712487
c(0.32 - qnorm(0.975) * x.se, 0.32 + qnorm(0.975) * x.se)
## [1] 0.2787513 0.3612487
```


Plot and check effect

```
# plot with tidyverse
ggplot(se_plot, aes(x,y)) +
    geom_errorbar(aes(ymin = y-2*se, ymax = y+2*se), width = 0.25, color = "purple") +
    geom_point(size = 2) + ylim(0.25,0.5) +
    geom_hline(yintercept = 0.369, linetype = "dashed") +
    geom_text(x=1.5,y=0.37,label = "No \n Overlap", color = "red", size = 4.5) +
    geom_text(x=0.85,y=0.32,label = "Point \n Estimate", color = "blue", size = 4.5) +
    geom_text(x=2.15,y=0.43,label = "Point \n Estimate", color = "blue", size = 4.5) +
    ylab("Mean") + xlab("Population Groups") +
    theme_bw()
```


More simulations and data

- Create our own experimental data
- library(fabricatr): Random data generator
- Steps:

1. Create treatments (assign sample size and probabilities).
2. Create binary outcome variables.
3. Create continuous outcome variables.

- Join all variables into one large data set.
- Focus on treatment 1 and cont. outcome variable:
- Regime of aid recipient (democracy or not).
- Extent of aid provided.

Create random data

- Code for treatments and all variables

```
## Create data
# Set seed for randomizer
set.seed(12345)
# Create treatments (sample size of 1000)
exp.dat <- fabricate(
    N = 1000,
    trt1 = draw_binary (N = 1000, prob = 0.5),
    trt2 = draw_binary (N = 1000, prob = 0.5))
# Create Binary © Continuous outcome variables
random_vars <- fabricate(
    N = 1000,
    dv_cor1 = correlate(given = exp.dat$trt1, rho = 0.8,
        draw_binary, N = 1000, prob = 0.65),
    dv_cor2 = correlate(given = exp.dat$trt2, rho = 0.65,
        draw_binary, N = 1000, prob = 0.35),
    cont_cor1 = correlate(given = exp.dat$trt1, rho = 0.55,
        rnorm, mean = 1500, sd = 30),
    cont_cor2 = correlate(given = exp.dat$trt2, rho = 0.75,
            rnorm, mean = 1450, sd = 45))
```


Create random data

- Join variables and final data output

```
# Tidyverse approach to join columns
exp.dat <- left_join(exp.dat, random_vars, by = "ID")
# Our random experimental data
head(exp.dat, n=8)
\begin{tabular}{lrrrrrrr} 
\#\# & ID & trt1 & trt2 & dv_cor1 & dv_cor2 & cont_cor1 & cont_cor2 \\
\#\# 1 & 0001 & 1 & 0 & 1 & 0 & 1523.100 & 1395.533 \\
\#\# 200002 & 1 & 1 & 1 & 1 & 1492.402 & 1466.578 \\
\#\# 3 & 0003 & 1 & 0 & 1 & 0 & 1500.165 & 1431.904 \\
\#\# 4 & 0004 & 1 & 0 & 1 & 0 & 1510.011 & 1406.666 \\
\#\# 5 & 0005 & 0 & 1 & 0 & 1 & 1515.649 & 1442.158 \\
\#\# 6 & 0006 & 0 & 0 & 0 & 0 & 1512.053 & 1430.640 \\
\#\# 7 & 0007 & 0 & 0 & 0 & 1 & 1474.265 & 1451.380 \\
\#\# 8 & 0008 & 1 & 1 & 1 & 0 & 1498.759 & 1443.719
\end{tabular}
```


Exploring the experimental data

- Random assignment of 'respondents'?
- Calculate mean outcome for treatment 1 and ATE.

```
# How many 'respondents' assigned per treatment?
n.zero <- sum(exp.dat$trt1 == 0)
n.zero
## [1] 469
n.one <- sum(exp.dat$trt1 == 1)
n.one
## [1] 531
# Mean outcome variable by treatment 1
est.zero <- mean(exp.dat$cont_cor1[exp.dat$trt1 == 0])
est.zero
## [1] 1489.333
est.one <- mean(exp.dat$cont_cor1[exp.dat$trt1 == 1])
est.one
## [1] 1509.973
# calculate ATE (Y(1) - Y(0))
est.one - est.zero
## [1] 20.6396
```


How does it look?

Regime treatment matters?

- Calculate margin of error \rightarrow SEs
- Calculate Cls (define $\alpha=0.05$)

```
# SEs for treatment 1 results
se.zero <- sd(exp.dat$cont_cor1[exp.dat$trt1 == 0]) / sqrt(n.zero)
se.zero
## [1] 1.068058
se.one <- sd(exp.dat$cont_cor1[exp.dat$trt1 == 1]) / sqrt(n.one)
se.one
## [1] 1.06291
# Define alpha
alpha <- 0.05
# CIs
ci.zero <- c(est.zero - qnorm(1-alpha / 2) *
    se.zero, est.zero + qnorm(1-alpha / 2) * se.zero)
ci.zero
## [1] 1487.240 1491.427
ci.one <- c(est.one - qnorm(1-alpha / 2) *
    se.one, est.one + qnorm(1-alpha / 2) * se.one)
ci.one
## [1] 1507.890 1512.056
```


How does our effect looks? matters?

```
# plot with tidyverse
ggplot(se_plot2, aes(x,y)) +
    geom_pointrange(aes(ymin = y-2*se, ymax = y+2*se), color = "blue", size = 1.75) +
    geom_point(size = 2) + ylim(1480,1520) +
    geom_hline(yintercept = 1500, linetype = "dashed") +
    geom_text(x=1.5,y=1502,label = "No \n Overlap", color = "red", size = 4.5) +
    geom_text(x=0.8,y=1489,label = "Point \n Estimate", color = "purple", size = 4.5) +
    geom_text(x=2.2,y=1510,label = "Point \n Estimate", color = "purple", size = 4.5) +
    ylab("Mean") + xlab("Population Groupa") +
    theme_bw()
```


Clarifying objectives

- What's with all the simulations?
- Real world: 1 sample, 1 mean...
- Research supported by simulations: public policy
- Support for government policy: expand anecdotal findings.
- Lobbying in the senate: women representatives example.
- Research supported by simulations: business world
- Product design and development: expand A / B testing.

Estimation approaches

- Estimation thus far \rightarrow CLT
- ATE \& Cls are based on CLT assumption
- Alternative: outcome variable $\sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- Use student's t-distribution:
- Also describes DOF (degrees of freedom).
- normal z -score $==$ student's t -statistic.
- Distribution has 'heavier tails'.

student's t-distribution

- DOF $=(n-k),(\mathrm{n}=$ observations; $\mathrm{k}=$ model parameters $)$.
- Critical value: t-statistic

Numbers in each row of the table are values on a f -dstribution with (af) degrees of freedom for selected right-tall (greater-than) probabilties (p).								
dip	0.00	0.25	0.10	0.05	0.085	0.01	0.005	0.0005
1	0.324920	1.000050	307884	6313752	1275621	31.82052	66.65874	5366192
2	0288675	0.816 ± 97	1.855518	291998	4.3025	6.96455	${ }^{292444}$	31.5991
3	0.278671	0.76485	1.63744	2353368	3.18245	4.59770	588691	12.2240
4	0.27072	0.740037	1.533200	2131387	2.77545	3.74959	450439	86103
5	026781	0.78689	1.475334	2015008	2.5758	3.3649	403214	68588
6	0264835	0.717558	1.439756	1.943180	244591	3.14287	37074	59588
7	0263167	0.71142	1.41458	1.88657	2.36662	2.98995	3.45048	54779
8	0.261921	0.75337	1.336315	1.859558	23.30500	299545	3.35339	50413
9	0200955	Q.0272	1.330379	1.833113	2.26816	2.22144	324984	47809
10	0280185	0.598812	1.372184	1.812461	2.22814	276377	316827	45669
11	0295556	0.98945	13 33330	795485	2.0039	2.71508	310581	4.438
12	0.25903	0.68589	1.356217	1.72228	2.17891	288100	305454	43178
13	0.25859	0.693629	1.350171	1.7033	2.18897	285519	301228	42208
14	0.258213	0.6582417	1.345330	1.751310	2.14479	262249	297684	41465
15	0257885	0.69197	1.340506	1.773550	2.13145	2.50248	294671	40728
16	0257599	0.590138	1336757	1.775384	2.11991	2.58349	292978	40150
17	025737	0.88195	133378	1.73907	2.10392	2.5699	288923	39551
18	0.25123	0.58334	1330391	1.730064	2.10932	2.55338	287894	39215
19	029m93	0.586621	132728	1.79133	2.09392	253948	288098	3834
20	0.256743	0.685954	1.325341	1.72418	2.09596	252798	284534	38495
21	0255550	0.656352	1.333188	1.2078	2.073 1	2.51765	283136	38193
22	0255182	0.858085	1.321237	1.77714	2.07387	2.5033	281878	37929
23	0258297	0.08536	1.319650	1.71372	2.605\%	249997	28073	3775
24	0256173	0.88450	1.317336	1.71038	2.66350	2.49215	278994	37454
25	0235060	0.58450	1.31635	1.708141	2.05954	2.48511	27874	37751
28	0255955	0.684043	1314372	1.705018	2.05553	247363	27871	3786
27	0255858	0.880685	1.313703	1.703288	2.25183	247268	277068	38396
28	0255768	0.683383	1312527	1.701131	20434	24874	276328	36739
29	0255684	0.58304	1.311434	1.589127	2.0453	2.462022	27833	36594
30	0255665	0.882756	1.310415	1.687761	2.4537	245728	275000	38660
2	0.25334	0.57450	1.231552	1.64454	1.55996	232355	251583	32805
CI			20\%	90\%	95\%	96\%	99\%	93.\%

t-distribution in R

- Cls ar wider, more conservative
- Use qt() function

```
# CI: CLT vs. t-distribution
# Treatment = 0
ci.zero
## [1] 1487.240 1491.427
ci.zeroT <- c(est.zero - qt(0.975,df = n.zero - 1) * se.zero,
    est.zero + qt(0.975,df = n.zero - 1) * se.zero)
```

ci.zeroT
\#\# [1] 1487.234 1491.432
\# Treatment $=1$
ci.one
\#\# [1] 1507.8901512 .056
ci.oneT <- c(est.one - qt(0.975, df = n.one - 1) * se.one,
est.one $+\mathrm{qt}(0.975, \mathrm{df}=\mathrm{n}$.one -1$)$ * se.one)
ci.oneT
\#\# [1] $1507.885 \quad 1512.061$

Wrapping up Week 11

- Summary:
- The challenge of uncertainty: Separating signals and noise.
- Estimation using sample mean or diff-in-means.
- Simulations and estimators probability distributions.
- SD, SEs and margin of errors.
- Constructing Cl - how to interpret $95 \% \mathrm{CI}$?
- Estimators are uncertain, but meaningful?
- Estimating with the t-distribution.

