Bush 631-600: Quantitative Methods
 Lecture 8 (10.25.2022): Probability vol. I

Rotem Dvir

The Bush school of Government and Public Policy
Texas A\&M University

Fall 2022

What is today's plan?

- Calculating uncertainty: probability
- What is probability? why should we learn it?
- Probability theory (some equations...)
- How to use probability in the real world?
- R work: prop.table(), addmargins().

Learning from data

Our 7-week quest:

- How to estimate causal effects.
- Understand measurement challenges.
- Build models to describe and test reality.
- Assess correlations.
- Generate prediction about unknown quantities.

The question now?
How do we know our estimates are 'real' or just due to random chance?

We have findings!!!

- Data patters are systematic? Or noise?
- Our estimates \rightarrow real relationship or random?

Solutions:

- Select (at random) a different sample / treatment.
- Method to quantify the degree of statistical uncertainty of empirical findings.

Probability

Intro to probabilities

Probability:

- Set of tools to measure uncertainty in world (and our data).
- Method to formalize uncertainty or chance variation.
- Define odds for all (defined) possible outcomes.

What's the chance?

January 28, 1986: Challenger shuttle

Probabilites translated

Challenger accident (1986): what is the chance of failure?

- Experts: 100-1.
- NASA management: 100,000-1.
- What is 100,000 in 1 ?
- Repeated testing and odds of event (failure).
- Enough events? we can calculate probabilities...

Probability explained

- Probability \rightarrow measure randomness.
- Random \neq complete unpredictability:
- Short-term: unpredictable (very hard to calculate).
- Long-term: predictable (multiple repetitions).

Probability explained

- Odds for heads? and tails?
- Overall: 0.5 probability H/T.

Coin toss chances

- 5 flips: HHHHT
- How 0.5 exactly?

The secret?

Repetition - multiple iterations

- Estimate probability.
- Why only estimate? "toss again..."
- Mathematical probability - ideal in infinite series of trails.
- Explain long-term regularity of random event (behavior).

Figuring the odds

Why?

Figuring the odds

Can we estimate the odds?

- Religions?
- Place of residence: TX, NY?
- Other groups/identities?

Americans overestimate the size of minority groups and underestimate the size of most majority groups

Estimated proportions are calculated by averaging weighted responses (ranging from 0% to 100%. rounded to the nearest whole percentage) to the question "If you had to guess, what percentage of American adults..." True proportions were drawn from a variety of sources, including the U.S. Census Bureau, the Bureau of Labor Statistics, and polls by YouGov and other polling firms.

Figuring the odds

> Law of
> Averages: When?

Figuring the odds

Rare event and our behavior

TABLE 1.1 How Dangerous Is Terrorism?

Cause of Death	Times more like compared to a ter	ly to kill an American errorist attack
Heart disease		35,079
Cancer		33,842
Alcohol-related death		4,706
Car accident		1,048
Risky sexual behavior		452
Fall		353
Starvation		187
Drowning		87
Railway accident		13
Accidental suffocation in bed		12
Lethal force by a law enforcement officer		8
Accidental electrocution		8
Hot weather		6
	\% Critical threat	\% Importan critical
International terrorism	$79)$	18
Development of nuclear weapons by Iran		18

Figuring the odds

Solve this:

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Schools of thought

Frequentist

- The limit of relative frequency.
- Ratio of number of events occur and total number of trails.
- Challenge: same conditions??

BAYESIAN

- Measure of subjective belief about an event occurring.
- Challenge: how to conduct science?

Probability theory

Concepts, axions and definitions

- Sample space (Ω): set of all possible outcomes.
- Event: any subset of outcomes in sample space.
- Card deck: 52 cards (13 rank) \times (4 suits)
- Trial: pick a card at-random

```
Sample space:
    2& 3% 4% 5% 6% 7% 8% 9% 10& J& Q& K& A&
```



```
2O 30 4O 50 60 70 80 90 100 JO QO KO AO
2\diamond 3\diamond4\diamond5\diamond6\diamond 7\diamond 8\diamond9\diamond 10\diamondJ\diamondQ\diamondK\diamond A\diamond
An event: picking a Queen, {Q&, Q&,QФ,Q\diamond}
```


Probability

Calculate probability of event:

$$
P(A)=\frac{\text { Elements }(A)}{\operatorname{Elements}(\Omega)}
$$

Example: coin toss $\times 3$
Sample space (Ω): $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH} . \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$.
Get an least two heads?
Event A: $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$.
Probability: $P(A)=\frac{4}{8}=0.5$

Probability

- Define how likely/unlikely events are.
- Based on three axioms:

1. Probability of any event A is nonnegative $(P(A)>=0)$.
2. Normalization $(P(\Omega)=1)$.
3. Addition rule - If events A and B are mutually exclusive then $P(A$ or $B)=P(A)+P(B)$

- Axioms $1 \& 2 \rightarrow 1>P($ event $)>0$

Gambling 101

Probability of mutually exclusive events

- What is $\mathrm{P}(\mathrm{A}) \rightarrow$ select Queen card at-random?
- Any card selection: 1/52.
- Select queen event: $\{Q \boldsymbol{q}, Q \diamond, Q \triangleleft, Q \boldsymbol{\uparrow}\}$.
- P (event) $=$ union of mutually exclusive events \rightarrow addition rule
- $P(Q)=P(Q \&)+P(Q \diamond)+P(Q \diamond)+P(Q \mathbf{Q})=\frac{4}{52} \approx 7.7 \%$

Events relationships

Mutually \& not Mutually exclusive events

Disjoint Sets

Probability facts

- Probability of complement: $P\left(A^{C}\right)=P($ not $A)=1-P(A)$
- Probability of not drawing a Queen: $1-\frac{4}{52}=\frac{48}{52}$
- General addition rule: $P(A \circ r B)=P(A)+P(B)-P(A \& B)$
- Probability of events (not disjointed): the presidential race with 3rd candidate.
- Cards example: probability of Queen or $\boldsymbol{\$}$?
- Queen $\left(\frac{4}{52}\right)+\boldsymbol{4}\left(\frac{13}{52}\right)-$ Q\& $\left(\frac{1}{52}\right)=\frac{16}{52}$

Calculating outcomes

- Permutations: enumerating all possible outcomes.
- Ordering three events ($A / B / C$): $\{A B C, A C B, B A C, B C A, C A B, C B A\}$.
- A short-cut??

Figure 6.3. A Tree Diagram for Permutations. There are 6 ways to arrange 3 unique objects. Source: Adapted from example by Madit, http://texample.net.

Calculating outcomes

- General permutation formula:

$$
{ }_{n} P_{k}=n *(n-1) * \ldots *(n-k+2) *(n-k+1)=\frac{n!}{(n-k)!}
$$

- How many ways to sit 5 students in our class?

```
# Use permutations formula
factorial(19)/factorial(14)
```

\#\# [1] 1395360

Permutations

- The birthday problem:
- What n so P (two people share birthday) >0.5 ?
- Easier route by looking at complement.
- Find $\rightarrow 1$ - P (nobody has the same birthday).

```
bday <- function(k){
    logdenom <- k * log(365) + lfactorial(365-k)
    lognumer <- lfactorial(365)
    pr <- 1 - exp(lognumer - logdenom)
    return(pr)
}
k<- 1:20
test_bday <- bday(k)
names(test_bday) <- k
test_bday[15:20]
\begin{tabular}{lrrrrrr} 
\#\# & 15 & 16 & 17 & 18 & 19 & 20 \\
\#\# & 0.2529013 & 0.2836040 & 0.3150077 & 0.3469114 & 0.3791185 & 0.4114384
\end{tabular}
```


Sampling procedures

- With replacement:
- Same unit can be 'selected' repeatedly.
- Replace card in stack after draw.
- Two people born on the same day.
- Without replacement:
- Each unit can be sampled at most once.
- Card removed after draw.
- Procedure matters for probability calculations.
- Combinations: another counting method (ignore ordering).

And. . .

And. . .

Probabilities and the real-world

Using probability in bars?

- Setting: 5 men, 5 women.
- Objective: get a dance.
- All go for blonde $\rightarrow \mathrm{P}($ dance $)=\frac{1}{4}$
- Each man \rightarrow non-blonde: $\mathrm{P}($ dance $)=\frac{1}{1}$
- Nash equilibrium: no incentive to deviate.
- Mutual cooperation: global trade, negotiations (prisoner's dilemma).

Conditional probability

- We know event B occurred, what is the probability of event A ?
- Examples:
- What is the probability of two states going to war if they are both democracies?
- What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?
- What is the probability that there will be a coup in a country conditional on having a presidential system?

Conditional probability

$$
P(A \mid B)=\frac{P(A \& B)}{P(B)}
$$

Conditional probability

- Conditioning information matters!
- Twins:
- Sample space: $\Omega=\{G G, G B, B G, B B\}$.
- $P(B B \mid$ at least one boy $)=P(B B \mid$ elder is a boy $) ? ?$
$\mathrm{P}(\mathrm{BB} \mid$ at least one boy $)=\frac{P(B B \&(B B|B G| G B))}{P(B B|B G| G B)}=\frac{P(B B)}{P(B B|B G| G B)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
$\mathrm{P}(\mathrm{BB} \mid$ elder is a boy $)=\frac{P(B B \&(B B \mid B G))}{P(B B \mid B G)}=\frac{P(B B)}{P(B B \mid B G)}=\frac{1 / 4}{1 / 2}=\frac{1}{2}$

Conditioning info: numbers and Aggs

Aggies in the NFL: position groups and conferences

```
head(Ags)
## # A tibble: 6 x 5
## Player Team Position Group Conference
## <chr> <chr> <chr> <chr> <chr>
## 1 Christian Kirk Jacksonville Jaguars WR OF NFC
## 2 Jake Matthews Atlanta Falcons OT OF NFC
## 3 Otaro Alaka Baltimore Ravens LB DF AFC
## 4 Justin Madubuike Baltimore Ravens DT DF AFC
## 5 Tyrel Dodson Buffalo Bills LB DF AFC
## 6 Germain Ifedi Chicago Bears OG OF NFC
```


Conditioning info: numbers and Aggs

```
# Tabulate data
t <- table(Conf = Ags$Conference, Pos.Grp = Ags$Group)
addmargins(t)
## Pos.Grp
## Conf DF OF ST Sum
## AFC 8 10 2 20
## NFC 4 4 12 2 2 18
## Sum 12 22 4 38
```

- Choose one at-random.
- What is probability of choosing Offense?
- $\mathrm{P}(\mathrm{OF})=\frac{22}{38}=0.57$
- What is probability of choosing Offense \& NFC?
- $\mathrm{P}(\mathrm{OF} \& \mathrm{NFC})=\frac{12}{38}=0.31$
- What is probability that randomly selected NFC is offense?
- $\mathrm{P}(\mathrm{OF} \mid \mathrm{NFC})=\frac{P(O F \& N F C)}{P(N F C)}=\frac{12 / 38}{18 / 38}=0.66$

Conditional probability in Global affairs

Military alliances: a contract

Global military alliances

Leeds (2003):

- Defensive cooperation.
- Offensive cooperation.
- Neutrality.
- Non-aggression.
- Consultation.

Probability and data

Military Alliances (ATOP) data (1815-2018)

Probability in R

- Alliance \& domestic ratification

```
# Probabilities for domestic ratification
prop.table(table(Ratification = atop2$estmode))
## Ratification
## 0 1
## 0.2187919 0.7812081
# Probabilities for secret provisions
prop.table(table(publicity = atop2$pubsecr))
## publicity
## 0 1 2
## 0.92557828 0.01709688 0.05732484
```


Probability in R

- Alliance \rightarrow commitment.
- US guarantee military assistance?

```
# Subset data (tidyverse): US alliances only
atop.us <- atop2 %>%
    filter(member == 2)
# Probability of military commitment
prop.table(table(atop.us$defense))
##
## 0 1
## 0.4210526 0.5789474
```

- Conditional probability

```
## Types of military aid given that alliance has defensive provision
prop.table(table(atop2$milaid[atop2$defense == 1]))
```

\#\#
$\begin{array}{llllll}\text { \#\# } & 0 & 1 & 2 & 3 & 4\end{array}$
\#\# 0.816326530 .037551020 .015510200 .111836730 .01877551

Probability in R

- Joint probability tables
- Marginal probabilities \rightarrow sum of rows/columns

```
# Defense and Offense provisions
j1 <- prop.table(table(def = atop2$defense, off = atop2$offense))
addmargins(j1)
## off
## def 0 1 Sum
## 0}00.56569709 0.01738549 0.58308258
## 1 0.33132732 0.08559010 0.41691742
## Sum 0.89702441 0.10297559 1.00000000
# Offensive and secret provisions
j2 <- prop.table(table(secret = atop2$secrart, off = atop2$offense))
addmargins(j2)
## off
## secret 0 1 Sum
```



```
## 1 1 0.003687563 0.000000000 0.003687563
## 3 0.003687563 0.000000000 0.003687563
## 4 0.004022796 0.001005699 0.005028495
## 5 0.001005699 0.000000000 0.001005699
## 6 0.000000000 0.001005699 0.001005699
## llllll
## 8 0.034193765 0.023131076 0.057324841
## Sum 0.898759638 0.101240362 1.000000000
```


Independence

- Events are not related.
- Knowing the A occurred does not affect the probability of B occurring.
- Marginal probability of B (knowing A occurred) remains $P(B)$.
- Formally:
- $P(A \& B)=P(A) * P(B)$
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$

Independence in ATOP data

- Defense treaties \& Economic aid: related?

```
# Marginal probability: levels of economic aid
prop.table(table(EconAid = atop2$ecaid))
## EconAid
## 0 1 2 
## 0.88870037 0.01798439 0.02341364 0.06990159
# Marginal probability: defense alliance
prop.table(table(Defense = atop2$defense))
## Defense
## 0 1
## 0.5830826 0.4169174
# Joint probability: defense and econ aid
prop.table(table(Defense = atop2$defense, EconAid = atop2$ecaid))
## EconAid
\begin{tabular}{lrrrrr} 
\#\# Defense & 0 & 1 & 2 & 3 \\
\#\# & 0 & 0.510349508 & 0.007125891 & 0.019681032 & 0.050559891 \\
\#\# & 1 & 0.378350865 & 0.010858500 & 0.003732609 & 0.019341703
\end{tabular}
```


Plotting independence

Defense treaties \& Economic aid

Checking for independence of events: Military Alliances

Independence

- Throw conditional probability into the mix.
- The Monty Hall problem:

Bayesian probability

- The subjective side of probability estimates.
- How prior knowledge and new evidence shape our behavior?
- Bayes rule: mathematical solution to update our beliefs.

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)}=\frac{P(B \mid A) * P(A)}{P(B \mid A) * P(A)+P\left(B \mid A^{C}\right) * P\left(A^{C}\right)}
$$

- $\mathrm{P}(\mathrm{A})$: prior probability.
- Event B occur.
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ posterior probability

Bayes in real life

- Where is my phone/laptop?
- Health diagnosis.
- Monetary policy.
- Insurance premiums and hazard events.

Bayes and the British code breakers

Alan Touring and Enigma Machine

- Near-infinite potential code translations.
- Solutions \rightarrow previous encrypted messages.
- U-Boats \rightarrow weather and shipping phrases.

Wrapping up week 8

Summary:

- Probability: tool to measure uncertainty in events.
- What is it good for?
- Conditional probability: importance of information.
- Independence of events.
- Bayesian reasoning.

Research Proposal due next week!

