Bush 631-600: Quantitative Methods

Lecture 6 (10.04.2022): Prediction vol. II

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Fall 2022

What is today's plan?

- ▶ Predictions: Improved (and more accurate) methods.
- ▶ Identify correlations in data with plots.
- ▶ The linear model: correlations, predictions, fit.
- ► Final project prep: Formulate your research question.
- R work: scatterplot(), lm(), cor().

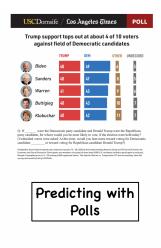
Framing a messege with a plot

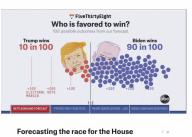
How the Ruble's Value Has Changed

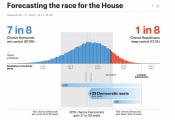
Note: Scale is inverted to show the decline in the ruble's value. Price as of 5:00 p.m. Eastern. Source: FactSet By The New York Times

Predicting with data

Elections forecasting

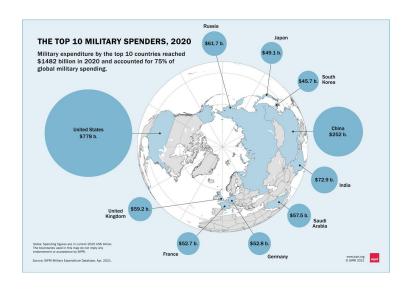






Predicting with data

Military spending \rightarrow arms race



Predicting with data

Method:

- Calculate values per group.
- Prediction = mean value.
- ► Elections: 51 US states (2016).
- Arms: 157 countries (1999-2019).
- Main benefit: simple and consistent.
- Foundation for customer outreach: Purchasing (Amazon); Content (Netflix).

However,

- Mean → sensitive to outliers/extreme values.
- Median?
- 'Ignore' context of special circumstances.

Better predicting with data

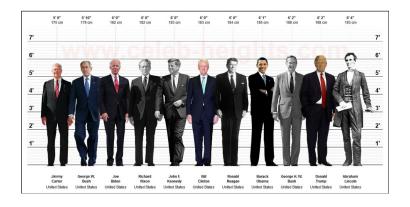
Explore linear relationship between factors

Advanced statistical methods to explore causality:

- Account for average and extreme values.
- Account for confounders.
- Integrate uncertainty in nature.

Data and linear relationship

Physical appearance and electoral victory

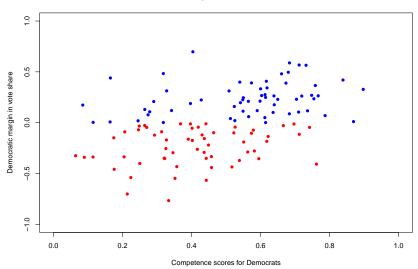


Data and linear relationship

Facial appearance too?

Which person is the more competent?

Data and linear relationship



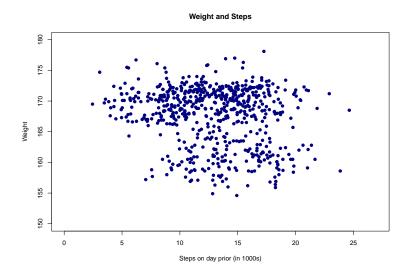
Checking correlation

- Upward trend linking competence score and winning.
- ► Facial appearance can help winning. . .
- ► Is it?

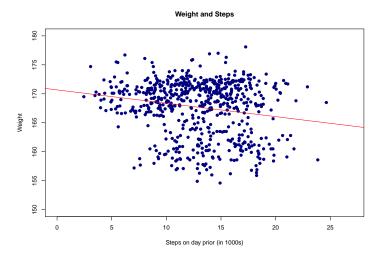
```
# Correlation
cor(face$d.comp, face$diff.share)
```

```
## [1] 0.4327743
```

More examples



Should I walk to work??



cor(health\$steps.lag, health\$weight)

[1] -0.1907032

Identify correlation in data

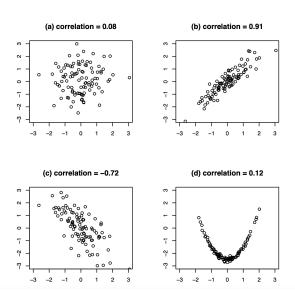
Correlation and scatter plots:

- ▶ Positive correlation → upward slope
- ightharpoonup Negative correlation ightarrow downward slope
- ightharpoonup High correlation ightharpoonup tighter, closer to a line
- Correlation cannot capture nonlinear relationship.

Can we see it?

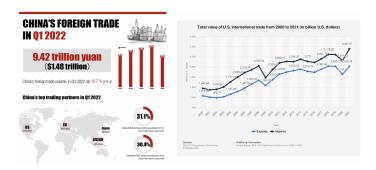
Identify correlation in data

Scatter plots and correlations:



Correlations and predictions: INTA style

GLOBAL TRADE FLOWS



- ▶ Volume (Q1 2022): \$7.7 trillion.
- ▶ Increases in goods and services (20-25% higher than Q1 2021)

Explaining international trade

The Gravity Model

- "Workhorse of int'l trade"
- Trade volume b-w countries:
- 1. Size of economies.
- 2. Distance.



Measuring Gravity and Trade

▶ Distance, land area, population size, borders, etc.

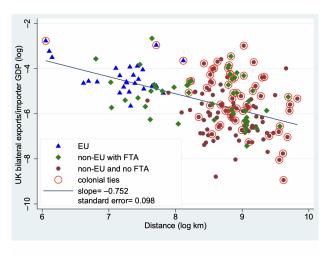


Fig. 2. UK Bilateral Exports/Importer GDP and Distance, 2017.

The Gravity Model

Trade and global processes

- International conflict / global alliances:
 - ► Trade persist b-w strong economies.
 - ▶ Weak and strong economy: trade increases with defense pact.
 - Weak and strong economy: trade decays with military conflict.
- Move towards Democratization:
 - ► Increased trade → consolidate democracy.
 - Openness (free trade) increase democratization.

International Trade and democracy promotion

Doces and Magee (2015)

- Benefits of globalization:
 - ightharpoonup Abundant labor ightharpoonup trade helps workers (and harms capital).
 - ightharpoonup Abundant capital o trade helps capital (and harms workers).
- ▶ Trade \rightarrow strengthen democracy (labor abundant).
- ▶ Trade \rightarrow weaken democracy (capital abundant).

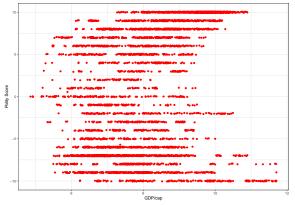
Trade and Democracy

Data: democracy and econ (1960-2007)

```
dim(a)
## [1] 10421
             33
head(a, n=5)
## # A tibble: 5 x 33
##
     year my code open hat1 wb code country pwt c~1 polity2 America Europe Af
    <dbl> <dbl>
                    <dbl> <chr>
                                 <chr>
                                           <dbl>
                                                  <dbl>
                                                          <dbl> <dbl> <
##
     1960
                   15.8 AFG
                                 Afghani~
                                              NA
                                                    -10
                                                                    0
## 1
## 2 1961
                   15.7 AFG
                                 Afghani~
                                              NA -10
## 3 1962
               1 15.5 AFG
                                 Afghani~
                                              NA -10
                                                                    0
                                 Afghani~
## 4 1963
                    16.1 AFG
                                             NA -10
                                                                    0
## 5 1964
                     17.5 AFG
                                 Afghani~
                                              NA
                                                    -7
## # ... with 23 more variables: Pacific <dbl>, oil <dbl>,
## #
      female_percent_pop <dbl>, pop_15_64 <dbl>, pop_15_under <dbl>, urban <db
## #
      region_polity_20 <dbl>, region_polity_10 <dbl>, region_open_20 <dbl>,
## #
      region_open_10 <dbl>, lang_num2 <dbl>, ethnic_num2 <dbl>,
      religion_num2 <dbl>, colony_1945 <dbl>, yrs_indep <dbl>, time <dbl>,
## #
## #
      open3 <dbl>, ln_gdppc8 <dbl>, ln_pop8 <dbl>, kl8 <dbl>, median_kl8 <dbl>
      above_median_kl8 <dbl>, above_avg_kl8 <dbl>, and abbreviated variable ..
## #
## # i Use `colnames()` to see all variable names
```

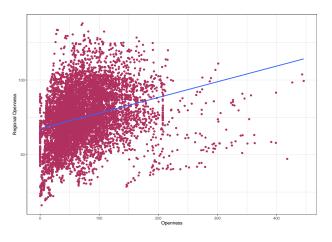
Gravity model - Trade data

```
ggplot(a, aes(ln_gdppc8,polity2)) +
  geom_jitter(color = "red") + xlab("GDP/cap") + ylab("Polity Score") +
  theme_bw()
```



```
cor(a$polity2,a$ln_gdppc8, use = "complete")
```

Gravity model - Trade data



[1] 0.2756198

Trade and democracy - with a caveat

[1] 0.1928551

Labor abundant \rightarrow more workers: Trade boost democracy

```
# Only labor abundant countries
aa <- a %>%
 filter(above median kl8 == 0)
# Trade and religious diversity
cor(aa$open3, aa$religion num2, use = "complete")
## [1] -0.210249
# Trade and working population
cor(aa$open3, aa$pop_15_64, use = "complete")
## [1] 0.1137331
# Trade and Democracy
cor(aa$open_hat1, aa$polity2, use = "complete")
```

Trade and democracy - with a caveat

[1] -0.09662274

Capital abundant \rightarrow less workers: Trade harms democracy

```
# Only capital abundant countries
aaa <- a %>%
 filter(above median kl8 == 1)
# Trade and religious diversity
cor(aaa$open3, aaa$religion num2, use = "complete")
## [1] 0.3193981
# Trade and linguistic diversity
cor(aaa$open3, aaa$lang_num2, use = "complete")
## [1] 0.2963194
# Trade and Democracy
cor(aaa$open_hat1, aaa$polity2, use = "complete")
```

Least squared

A LINEAR MODEL

$$Y = \alpha + \beta * X_i + \epsilon$$

Elements of model:

- Intercept (α): the average value of Y when X is zero.
- Slope (β): the average increase in Y when X increases by 1 unit.
- ▶ Error/disturbance term (ϵ) : the deviation of an observation from a perfect linear relationship.

Our model:

- Y → Democracy score (polity).
- X → Extent of int'l trade (openness).

Least squared

- ► Assumption: model → Data generation process (DGS)
- **Parameters/coefficients** (α, β) : true values unknown.
- Use data to estimate $\alpha, \beta \Longrightarrow \hat{\alpha}, \hat{\beta}$
- Predicting (finally!):
 - Use the regression line.
 - ► Calculate fitted value (≠ observed value)

$$\hat{Y} = \hat{\alpha} + \hat{\beta} * x$$

Linear model elements

- Residual/prediction error: the difference b-w fitted and observed values.
- Real error is unknown $\Rightarrow \hat{\epsilon}$

$$\hat{\epsilon} = Y - \hat{Y}$$

Linear model estimation

Least squared:

- A method to estimate the regression line.
- ▶ Use data (values of Y & X_i).
- 'select' $\hat{\alpha}, \hat{\beta}$ to minimize SSR.
- Calculate RMSE: average magnitude of prediction error (magnitude of least squared).

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta} * X_i)^2$$

Few more points:

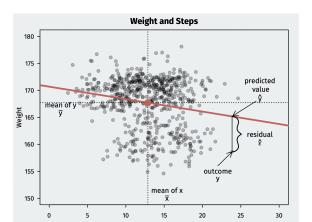
- ▶ Mean of residuals $(\hat{\epsilon}) == 0$.
- ▶ Regression line goes through center of data (\bar{X}, \bar{Y}) .
- $ightharpoonup \bar{X}, \bar{Y}$: Sample means of X & Y.

Linear regression in R

Fit the model

- ▶ Syntax: $Im(Y \sim x, data = mydata)$
- Y = dependent variable; x = independent variable(s).

How does it look like?

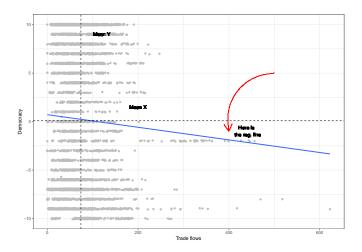


Trade and democracy - fitting the model

```
# Fit the model
fit <- lm(polity2 ~ open3, data = a)
fit
##
## Call:
## lm(formula = polity2 ~ open3, data = a)
##
## Coefficients:
## (Intercept) open3
     0.711664 -0.006503
##
# Directly obtain coefficients
coef(fit)
##
    (Intercept) open3
   0.711663968 -0.006502699
# Directly pull fitted values
head(fitted(fit))
##
```

0.6452021 0.6453733 0.6452360 0.6022816 0.5264752 0.5652951

Trade and democracy - visualize the model

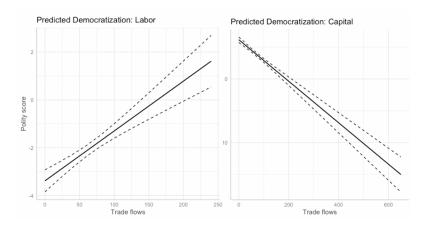


Trade and democracy - labor vs. capital

```
# Labor abundant
fit2 <- lm(polity2 ~ open3, data = aa)
fit2
##
## Call:
## lm(formula = polity2 ~ open3, data = aa)
##
## Coefficients:
## (Intercept) open3
     -3.38618 0.02086
##
# Capital abundant
fit3 <- lm(polity2 ~ open3, data = aaa)
fit3
##
## Call:
## lm(formula = polity2 ~ open3, data = aaa)
##
## Coefficients:
## (Intercept) open3
##
      6.14921 -0.03257
```

Trade and democracy - labor vs. capital

$\textbf{Predicted} \ \, \mathsf{Polity} \ \, \mathsf{score} \leftarrow \mathsf{Trade} \ \, \mathsf{volume}$



Least square

- lacktriangle Regression line ightarrow "line of best fit"
- Minimize prediction error
- ▶ Predictions of fitted line are accurate. How come?
- $ightharpoonup \bar{\hat{\epsilon}} = 0.$
- Linear model: not necessarily represent DGS (assumption).

Errors/Curses/Anomalies

Cursed??

Errors/Curses/Anomalies

Fighter pilots performance?

My kids height?

Actually

REGRESSION TO THE MEAN

- Empirical data driven.
- Explained by (random) chance.
- ▶ High (low) observations are followed by low (high) observations.
- ▶ Observations 'regress' towards the average value of the data.

Merging data sets

- ► Combine data with shared variables.
- Expand data available: more years, same information.
- ► Technical: use columns / rows.
- Multiple approaches.

Merging

(1) merge function:

- Join two datasets.
- Merge based on common variable (by argument).
- 2008-2012 voting data: state Abb. name (QSS pp. 150-151).
- Common variable: matching of rows and columns.
- ▶ Other common columns? Appended with .x or .y after name.

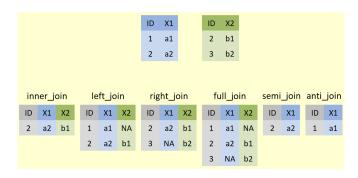
(2) cbind function:

- Column binding of multiple datasets.
- Main drawback: assumes similar sorting.
- Keeps duplicates.
- rbind(): join data by rows (add observations to data).

Merging

(3) Join (tidyverse):

- More flexible: multiple options.
- Keep one data, join by common variable.
- Keep all data, join by common variable.



Apply prediction with regression

- ▶ Linear model \rightarrow predict Y using X_i
- Using linear predictions policy:
 - Predict crime waves deploy police resources.
 - Predict students performance target interventions.
- Using linear predictions business:
 - Predict preferred products based on previous purchases.
 - Predict Netflix/Spotify content based on what I saw/heard?

Model fit

Our well does a linear model predict the data (outcome)?

Model fit:

Measures to assess model predictive accuracy.

Coefficient of determination (R^2) :

- The proportion of total variation in outcome explained by model.
- ▶ How much variation in Y explained by our model.
- Values from 0 (no correlation) to 1 (perfect correlation).

Model fit: R-squared

$$R^2 = \frac{TSS - SSR}{TSS}$$

TSS (Total sum of squares): prediction error with mean Y only

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

SSR (Sum of squared residuals): prediction error with model

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}^2$$

Independent candidates 'inertia'?

```
# Use summary function
summary(fit3 <- lm(Buchanan00 ~ Perot96, data = florida))</pre>
##
## Call:
## lm(formula = Buchanan00 ~ Perot96, data = florida)
##
## Residuals:
      Min
               10 Median
                                     Max
## -612.74 -65.96 1.94 32.88.2301.66
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.34575 49.75931
                                   0.027
                                            0.979
## Perot96
              0.03592
                       0.00434 8.275 9.47e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 316.4 on 65 degrees of freedom
## Multiple R-squared: 0.513, Adjusted R-squared: 0.5055
## F-statistic: 68.48 on 1 and 65 DF, p-value: 9.474e-12
```

▶ 51% of Buchanan (2000) explained by Perot (1996) voters.

'Conventional' candidates: Clinton - Gore

```
summary(lm(Gore00 ~ Clinton96, data = florida))
##
## Call:
## lm(formula = GoreOO ~ Clinton96, data = florida)
##
## Residuals:
##
       Min
               10 Median
                                 30
                                         Max
## -30689.3 -1161.5 -622.4 1040.3 23309.1
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 434.49448 921.26520 0.472
                                            0.639
## Clinton96 1.13120 0.01216 92.997 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6523 on 65 degrees of freedom
## Multiple R-squared: 0.9925, Adjusted R-squared: 0.9924
## F-statistic: 8648 on 1 and 65 DF, p-value: < 2.2e-16
```

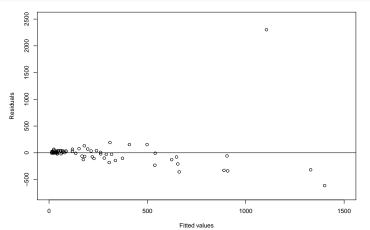
'Conventional' candidates: Dole - Bush

```
summary(lm(Bush00 ~ Dole96, data = florida))
##
## Call:
## lm(formula = Bush00 ~ Dole96, data = florida)
##
## Residuals:
##
       Min
             10 Median
                                 30
                                         Max
## -18276.9 -781.9 -105.3 1599.5 21759.1
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 799.82813 701.76481 1.14 0.259
## Dole96
             1.27333 0.01262 100.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4587 on 65 degrees of freedom
## Multiple R-squared: 0.9937, Adjusted R-squared: 0.9936
## F-statistic: 1.018e+04 on 1 and 65 DF, p-value: < 2.2e-16
```

Where did the independents go for the millennium?

```
summary(lm(Bush00 ~ Perot96, data = florida))
##
## Call:
## lm(formula = Bush00 ~ Perot96, data = florida)
##
## Residuals:
##
     Min
             10 Median 30
                                Max
## -49100 -5003 -2951 -582 145169
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1810.4147 3853.0142 0.47
                                             0.64
## Perot96
                 5.7646 0.3361 17.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24500 on 65 degrees of freedom
## Multiple R-squared: 0.8191, Adjusted R-squared: 0.8163
## F-statistic: 294.2 on 1 and 65 DF, p-value: < 2.2e-16
```

Maybe not all of them? Palm beach county



Remove outlier - better prediction

```
summary(lm(Buchanan00 ~ Perot96, data = florida cut))
##
## Call:
## lm(formula = Buchanan00 ~ Perot96, data = florida cut)
##
## Residuals:
##
      Min
          1Q Median
                              30
                                    Max
## -206.70 -43.51 -16.02 26.92 269.03
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 45.841933 13.892746 3.30 0.00158 **
## Perot96
          0.024352 0.001273 19.13 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 87.75 on 64 degrees of freedom
## Multiple R-squared: 0.8512, Adjusted R-squared: 0.8488
## F-statistic: 366 on 1 and 64 DF, p-value: < 2.2e-16
```

Model fit

- ▶ R²: measure of *in-sample* fit.
- Out-of-sample-fit: how model predicts outcomes 'outside' the sample.

Overfitting:

- ightharpoonup OLS ightharpoonup good for in-sample.
- Poor performance for out-of-sample.
- ► Example: use gender to predict 2016 democratic primaries winner.

Wrapping up week 6

Summary:

- Prediction: beyond sample means.
- Using plots to find correlations/trends in data.
- Least squared method.
- ► Linear model and estimating coefficients.
- Predictions based on linear model.
- Merging data.
- ▶ Model fit.

Looking ahead

Final Project:

- Objective.
- Technical aspects.
- Next task research proposal:
 - What is the topic / area?
 - Why important?
 - How will you study it?
 - Sources: substance and data.
 - Final visual product outline.

Proposal due November 1, 2022