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What is today’s plan?

I In-class: my first plot..:))

I More on measurement.

I Latent concepts.

I Visuals: scatterplots.

I Correlation.

I Predictions: why? how?

I Predict with data: elections, defense spending

I R work: scatterplot, subset(), loops, if{}, if{}else{}



Working with R Markdown - Class Task

Data (BAAD v.2): 140 insurgent groups (1998-2012).

I Create barplot: religious groups
I Base R: prop.table() vector and then plot
I Tidyverse: only x var in aes()

I Create histogram: number of civilian casualties
I Base R: define data and variable to plot ($)
I Tidyverse: add geom_histogram()



Measurement

Why?

I Social science: develop and test causal theories.
I Leader background and conflict behavior.
I Minimum wage and levels of full-time employment?
I Concepts: level of unemployment, leader background, public

approval.

How?

Measures - the context of theoretical concepts



Complex measurement

Latent concepts:

I Hard to measure.
I Variation in definitions.
I Democracy: the polity debate.
I Ideology: representative votes?

A new suspect:

I Terrorism: which violent events are terrorism?



What is terrorism?

Researchers → objective measures:

I Identity: perpetrators and victims.
I Population-wide psychological effects.
I Clear political objective.

The Public?

You tell me



Public views of terrorism?

Huff and Kertzer (2018):

I Objective: ‘facts on the ground’.
I Subjective: ‘who and why?’

The Method: Conjoint experiment

I No control group.
I Multiple treatments.
I Outcome: is it terrorism? (yes/no)
I How each factor contributes to viewing an incident as

terrorism?



Conjoint experiment: Terrorism

Scenario 1
The incident: shooting
The incident occurred in a church in a foreign democracy with a history of human
rights violation
Two individuals died.
The shooting was carried by a Muslim individual with history of mental illness.
News suggest the individual had ongoing personal dispute with one of the targets

Scenario 2
The incident: bombing
The incident occurred in a police station in a foreign dictatorship.
No fatalities reported.
The bombing was carried by a Muslim organization.
News suggest the group was motivated by the goal of overthrowing the government.



Objective path: results



Subjective path: results



Terrorism data

Type: event data

A lot of resources:

I GTD - START (Maryland).
I Individuals radicalization (PRIUS) - START (Maryland).
I Episodes of political violence (1946-2017) (Vienna, Austria).
I Suicide terrorism - CPOST (Chicago)
I List (Link)

https://www.universiteitleiden.nl/binaries/content/assets/customsites/perspectives-on-terrorism/2018/issue-5/bowie.pdf


Terrorism data

Global Terrorism Database (GTD):

I Time frame: 1970-2019.
I Events: International & domestic terrorism.
I Scope: over 100,000 cases.
I Sources: open source media.

Problem(s)?

I Events data → news sources.
I Temporal: less work prior to 1970.
I Biased and Selective reporting: strategic, sensational events.
I Errors in measurement.
I Measures matter - democracy and frequency of incidents

(polity, strategic reporting).

https://www.start.umd.edu/gtd/access/


Measuring ideology

Measurement models:

I Summarize data.
I Learn about human behavior.



Measuring ideology

Legislators measurement model: congress roll-call votes

Voting → political orientation.



Complex concepts & measurement

What’s the bottom-line?

I Latent concepts: democracy, ideology, terrorism.
I Tricky measurement: conjoint experiment, measurement

models.

How to improve measures?

I Theoretical grounding.
I Replications.



Bivariate Relationships

Summarize relationship b-w 2 variables

Liberal-conservative ideology: Economy & Race

head(congress)

## congress district state party name dwnom1 dwnom2
## 1 80 0 USA Democrat TRUMAN -0.276 0.016
## 2 80 1 ALABAMA Democrat BOYKIN F. -0.026 0.796
## 3 80 2 ALABAMA Democrat GRANT G. -0.042 0.999
## 4 80 3 ALABAMA Democrat ANDREWS G. -0.008 1.005
## 5 80 4 ALABAMA Democrat HOBBS S. -0.082 1.066
## 6 80 5 ALABAMA Democrat RAINS A. -0.170 0.870



Back to visuals
Scatter plot

I Visualize relationship between 2 variables.
I Numeric/continuous values.
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Congress ideology in the 21st century
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Congress ideology: time trend
dem.med <- tapply(dem$dwnom1, dem$congress, median)
rep.med <- tapply(rep$dwnom1, rep$congress, median)

plot(names(dem.med), dem.med, col = "blue", type = "l",
xlim = c(80,115), ylim = c(-1,1), xlab = "Congress",
ylab = "DW-NOMINATE Score")

lines(names(rep.med), rep.med, col = "red")
text(110, -0.6, "Democrats")
text(110,0.8, "Republicans")
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‘International’ Ideology
UN → International institution.

Voting patterns → countries orientation/ideology.



UN voting data (1946-2012)
dim(mydata)

## [1] 9120 6
summary(mydata)

## Year CountryAbb CountryName idealpoint
## Min. :1946 Length:9120 Length:9120 Min. :-2.6552
## 1st Qu.:1972 Class :character Class :character 1st Qu.:-0.6406
## Median :1987 Mode :character Mode :character Median :-0.1644
## Mean :1985 Mean : 0.0000
## 3rd Qu.:2001 3rd Qu.: 0.7968
## Max. :2012 Max. : 3.0144
##
## PctAgreeUS PctAgreeRUSSIA
## Min. :0.0000 Min. :0.0000
## 1st Qu.:0.1395 1st Qu.:0.5053
## Median :0.2400 Median :0.6567
## Mean :0.2960 Mean :0.6219
## 3rd Qu.:0.3902 3rd Qu.:0.7424
## Max. :1.0000 Max. :1.0000
## NA's :1 NA's :5



Global ideologies

Voting with US → measure of foreign policy similarity.

Similar FP → similar global orientation.

# Tidyverse approach to data management
# Arrange by year, calculate mean for US / Russia voting
annual.agree <- mydata %>%

group_by(Year) %>%
summarize(us.agree = mean(PctAgreeUS, na.rm = T),

ru.agree = mean(PctAgreeRUSSIA, na.rm = T))

head(annual.agree)

## # A tibble: 6 x 3
## Year us.agree ru.agree
## <int> <dbl> <dbl>
## 1 1946 0.585 0.362
## 2 1947 0.621 0.383
## 3 1948 0.578 0.279
## 4 1949 0.541 0.377
## 5 1950 0.635 0.312
## 6 1951 0.487 0.402



Trends in global ideology
ggplot(data = annual.agree) +

geom_line(mapping = aes(x = Year, y = us.agree), color = "blue") +
geom_line(mapping = aes(x = Year, y = ru.agree), color = "red") +
geom_text(aes(x = 2000, y = 0, label = "Voting with US"), color = "blue", data = data.frame()) +
geom_text(aes(x = 2000, y = 1, label = "Voting with Russia"), color = "red", data = data.frame()) +
geom_vline(aes(xintercept = 1989), linetype = "dotdash", color = "black") +
geom_text(aes(x = 1993, y = 0.5, label = "Cold War Ends"), color = "black") +
ylab("Proportion voting with Superpower") + theme_classic()

Voting with US

Voting with Russia
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Grouping observations

Which side are you on?



Grouping countries: FP Similarity measures
# Table for voting close to US
# USA
mydata %>%

group_by(CountryName) %>%
summarise(mean.pctUS = mean(PctAgreeUS)) %>%
arrange(desc(mean.pctUS)) %>%
head(n = 11) %>%
filter(CountryName != "United States of America")

## # A tibble: 10 x 2
## CountryName mean.pctUS
## <chr> <dbl>
## 1 Palau 0.736
## 2 United Kingdom 0.652
## 3 Taiwan 0.643
## 4 Israel 0.640
## 5 Federated States of Micronesia 0.594
## 6 Canada 0.586
## 7 Luxembourg 0.571
## 8 Netherlands 0.562
## 9 Belgium 0.562
## 10 France 0.549



Visualizing distributions
Qunatile Qunatile Plot

Scatter-plot of quantiles
### Q-Q plot
qqplot(mydata$PctAgreeUS, mydata$PctAgreeRUSSIA, xlab = "UN voting with US",

ylab = "UN voting with Russia",
main = "UN voting with superpower: trend over time")

abline(0,1)
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Political polarization: QSS textbook

Income inequality → political polarization.

The Gini coefficient



US test case

Gini coefficient - Political Polarization



Association b-w variables: Correlation

Income inequality → Political polarization?

Correlation does not mean causation



Correlation & causality



Association b-w variables

Correlation:

I Summary of bivariate relationship.
I How two factors ‘move together’ on average.
I Always relative to mean value.

Product of z-scores:

cor(x , y) = 1
n

n∑
i=1

(Z − xi ∗ Z − yi )



Z-scores

I A measure for the deviation from the mean (in SD terms)

I Standardize variable

I Allows comparison with common units

Zscore(Xi ) = xi − x̄
SD(Xi )

Z score > 0 → unit larger than mean
Z score < 0 → unit smaller than mean



z-score example: Test scores

Where do we stand versus our cohort?

I Total of 500 students
I Mean grade (X̄ = 85)
I SD (σ = 6)

# Our grades = 81, 90, 65
z1 <- (81-85)/6
z1

## [1] -0.6666667
z2 <- (90-85)/6
z2

## [1] 0.8333333
z3 <- (65-85)/6
z3

## [1] -3.333333



Correlation

I Average product of z-scores:
I Positive correlation: when x is bigger than its mean, so is y
I Negative correlation: when x is bigger than its mean, y is

smaller

I z-score: not sensitive to unit used

I Correlation is identical even for different measuring units of
variable



Correlation - how do the data look?

Positive correlation



Correlation - how do the data look?

Negative correlation



Correlation

I Measures linear association

I Order does not matter: cor(x,y) = cor(y,x)

I Interpretation:
I Values range between (-1) to 1.
I Close to ‘edges’ → stronger association.
I Value of zero → no association.
I Positive correlation → positive association.
I Negative correlation → negative association.



Correlation in R

UN Voting: association b-w ideal point & liberal FP approach

# Voting with US
cor(mydata$idealpoint, mydata$PctAgreeUS, use = "pairwise")

## [1] 0.7498446

# Voting with Russia
cor(mydata$idealpoint, mydata$PctAgreeRUSSIA, use = "pairwise")

## [1] -0.7050107



Predicting with data

I Social science research:
I Establish causality.
I The role of measurement.

I Predictions:
I Support for causal statements.
I Generate accurate predictions about potential outcomes.



Not the best. . . predictions!

Oh no. . .



Some more gems
Daily Mail - December 5, 2000



Some groundwork

Loops

I Useful to repeat the same operation multiple times.
I Efficient analysis tool.



Loops in R

I Run similar code chunk repeatedly.

I Elements of loop:
I i: counter (change as you like).
I X: Vector of ordered values for the counter.
I expression: set of expressions to run repeatedly.
I {}: curly braces define the beginning and end of a loop.



Loops in R

weeks <- c(1,2,3,4,5)
n <- length(weeks)
t <- rep(NA,n)

# loop counter
for (i in 1:n){

t[i] <- weeks[i] * 2
cat("I completed Swirl HW number", weeks[i], "in",

t[i], "minutes", "\n")
}

## I completed Swirl HW number 1 in 2 minutes
## I completed Swirl HW number 2 in 4 minutes
## I completed Swirl HW number 3 in 6 minutes
## I completed Swirl HW number 4 in 8 minutes
## I completed Swirl HW number 5 in 10 minutes



Conditional statements

Implement code chunks based on logical expressions.

If statements

Syntax: if(x = a condition){set of commands}

Run command(s) only if value if X is TRUE

weather <- "rain"
if (weather == "rain"){

cat("I should take my umbrella")
}

## I should take my umbrella



Flexible if statements

Using if(){} else {}

weather <- "sunny"
if (weather == "rain"){

cat("I should take my umbrella")
} else {

cat("I should wear my Aggie hat")
}

## I should wear my Aggie hat



Complex conditional statements
Join conditional statements into a loop.

days <- 1:7
n <- length(days)

for (i in 1:n){
x <- days[i]
r <- x %% 2

if (r == 0){
cat("Day", x, "is even and I need my umbrella \n")

} else {
cat("Day", x, "is odd and I need my Aggie cap \n")

}
}

## Day 1 is odd and I need my Aggie cap
## Day 2 is even and I need my umbrella
## Day 3 is odd and I need my Aggie cap
## Day 4 is even and I need my umbrella
## Day 5 is odd and I need my Aggie cap
## Day 6 is even and I need my umbrella
## Day 7 is odd and I need my Aggie cap



Conditional statements

Nesting multiple conditional statements → MyApp Link

Caution:

I if(){} else{} are complex.
I Double check the curly braces for each statement.
I Use the automatic indentation.
I ‘Space-out’ your code.
I Add comments (using #) to clearly mark each step.

https://rotemdvir.shinyapps.io/Shiny_NFL_Data/


Predictions
I Awesome research tool. . . with the right design.
I Predict: elections, economic trends, behavior, Superbowl

winners, etc.

Elections winner



US electoral system

Electoral college

Plurality of votes in a state: “Winner-take-all”



Election predictions

Measurement problem:

I National vote vs. electoral votes.
I Bush - Gore (2000).
I Clinton - Trump (2016).

Electoral vote:

I Number of electors does not align with number of voters per
state.

I Votes are “unaccounted”.

A Prediction problem:

I Accurate forecast of each state winner.



Polls and election predictions
Data: 2016 elections (polls)



Poll prediction by states (using R loop)



Errors in polling
Prediction error = actual outcome - predicted outcome

Root mean-square-error (RMSE): average magnitude of prediction
error



Prediction challenges

Prediction of binary outcome variable → classification problem

Wrong prediction → misclassification:

1. true positive: predict Trump wins when he actually wins.
2. false positive: predict Trump wins when he actually loses.
3. true negative: predict Trump loses when he actually loses.
4. false negative: predict Trump loses when he actually wins.

2016 elections: misclassification rate was high: 9.8% (5/51 states).



Predictions in INTA

Military spending across the globe



Predicting military spending

Our data:

I 157 Countries
I Time frame: 1999-2019
I Measure: military spending as proportion of total gov’t

spending.

Why this measure?

I Reflect state’s preferences.
I Trade-off: Guns vs. Butter.

Our predictions:

I Using 1999-2019 data to predict 2020 levels.
I Test predictions with actual data.



Military spending data
dim(mil_exp)

## [1] 157 25
head(mil_exp, n=8)

## # A tibble: 8 x 25
## Country Group1 Subgr~1 `1999` `2000` `2001` `2002` `2003` `2004` `2005` `2006`
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Algeria Africa North ~ 0.118 0.120 0.122 0.108 0.101 0.107 0.105 0.0916
## 2 Libya Africa North ~ 0.115 0.103 0.0630 0.0524 0.0484 0.0490 0.0502 0.0359
## 3 Morocco Africa North ~ 0.145 0.0898 0.145 0.125 0.134 0.123 0.105 0.111
## 4 Tunisia Africa North ~ 0.0618 0.0614 0.0605 0.0590 0.0603 0.0591 0.0601 0.0603
## 5 Angola Africa Sub-Sa~ 0.274 0.129 0.108 0.0919 0.109 0.116 0.139 0.123
## 6 Benin Africa Sub-Sa~ 0.0452 0.0264 0.0232 0.0407 0.0473 0.0506 0.0482 0.0512
## 7 Botswa~ Africa Sub-Sa~ 0.0759 0.0817 0.0899 0.0900 0.0915 0.0848 0.0823 0.0807
## 8 Burkin~ Africa Sub-Sa~ 0.0576 0.0624 0.0588 0.0605 0.0610 0.0596 0.0594 0.0508
## # ... with 14 more variables: `2007` <dbl>, `2008` <dbl>, `2009` <dbl>,
## # `2010` <dbl>, `2011` <dbl>, `2012` <dbl>, `2013` <dbl>, `2014` <dbl>,
## # `2015` <dbl>, `2016` <dbl>, `2017` <dbl>, `2018` <dbl>, `2019` <dbl>,
## # `2020` <dbl>, and abbreviated variable name 1: Subgroup1
## # i Use `colnames()` to see all variable names



Reshaping the data

I Use the gather() function

I Increase the data size.

I Each case (country for us) has multiple observations (rows).



Reshaping the data

gather() function: long-form data.

spend_long <- mil_exp2 %>%
gather(year, exp, '1999':'2019',-Country, -Group1, -Subgroup1) %>%
arrange(Country)

head(spend_long, n=9)

## # A tibble: 9 x 5
## Country Group1 Subgroup1 year exp
## <chr> <chr> <chr> <chr> <dbl>
## 1 Afghanistan Asia & Oceania South Asia 1999 NA
## 2 Afghanistan Asia & Oceania South Asia 2000 NA
## 3 Afghanistan Asia & Oceania South Asia 2001 NA
## 4 Afghanistan Asia & Oceania South Asia 2002 NA
## 5 Afghanistan Asia & Oceania South Asia 2003 NA
## 6 Afghanistan Asia & Oceania South Asia 2004 0.161
## 7 Afghanistan Asia & Oceania South Asia 2005 0.127
## 8 Afghanistan Asia & Oceania South Asia 2006 0.104
## 9 Afghanistan Asia & Oceania South Asia 2007 0.119



Predicting spending

Predict 2020 → mean of spending (1999-2019)

Use loop to calculate means for all countries

## loop
pred.mean <- rep(NA,157)
c.names <- unique(spend_long$Country)
names(pred.mean) <- as.character(c.names)

for (i in 1:157){
c.dat <- subset(spend_long, subset = (Country == c.names[i]))
pred.mean[i] <- mean(c.dat$exp, na.rm = T)

}



Predicting spending for 2020



Good prediction?

Checking for errors:

# Calculate errors & assign country names
errors <- mil_exp$`2020` - pred.mean
names(errors) <- c.names

# Average error
mean(errors, na.rm = T)

## [1] -0.01210775
# RMSE
sqrt(mean(errorsˆ2, na.rm = T))

## [1] 0.07380063



Prediction errors
How far off are we?

hist(errors, freq = FALSE)
abline(v = mean(errors, na.rm = T), lty = "dashed", col = "blue")

Histogram of errors

errors

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2

0
1

2
3

4
5

6



Accuracy of predictions
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Find outlier predictions
Identify where we were off. . .

# Errors distribution
summary(n.dat$error)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -0.164364 -0.017092 -0.004715 -0.008734 0.000374 0.053107 10
# Create variable for large outliers
n.dat$large.inc <- NA
n.dat$large.inc[n.dat$error > 0.01] <- "Much More"
n.dat$large.inc[n.dat$error < -0.01] <- "Much Less"

# Create subset of outliers: less than average
n.dat2 <- n.dat %>%

filter(large.inc == "Much Less") %>%
mutate(error = error * 100) %>%
select(Group1, error) %>% arrange(desc(error))

tail(n.dat2, n=9)

## Group1 error
## Chile Americas -3.785553
## Nepal Asia & Oceania -4.102959
## Sierra Leone Africa -4.945523
## Georgia Europe -5.375066
## Burundi Africa -5.521676
## Saudi Arabia Middle East -5.806989
## Ethiopia Africa -7.119952
## Sudan Africa -15.832405
## Singapore Asia & Oceania -16.436356



Spending over time (and predicted 2020 - the ‘big 3’)



Wrapping up week 5

Summary:

I Measuring complex (latent) concepts: terrorism, ideology.
I Visualize bivariate relations: scatter plot, QQplot.
I z-scores and standardizing units.
I Correlation: how two factors ‘move together’.
I Predictions: critical tool, how to? (loops, if/else).
I Predict elections or defense spedning with the average.
I R work: scatterplots, cor(), qqplot(), for loops, if{}else{}.

Task 1: Next Tuesday at midnight!!


