Bush 631-600: Quantitative Methods
 Lecture 4 (09.20.2022): Measurement vol. I

Rotem Dvir

The Bush school of Government and Public Policy
Texas A\&M University

Fall 2022

What is today's plan?

- R Markdown
- From concepts to measures.
- Why measurement? and its challenges.
- Visualizing data: plots.
- Methods: Surveys.
- R work: summary (), NAs, barplot, histogram, boxplot.

Working with R Markdown - Class Task

Data (BAAD v.2): 140 insurgent groups (1998-2012).

- Upload data - STATA file!!
- Use index or \$ method to display:

1. rows $(155,215,235,411)$ and columns (group name, home base, year, age, police/military fatalities).

- Create subsets for cross-tabs and diff-in-means:

1. 2 subsets: group operate in Iraq / Somalia
2. Tab group size and stick strategy for Iraqi groups
3. Diff-in-means of total fatalities b-w Iraq and Somalia

- Use prop.table() for proportions of groups with religious ideology
- Calculate the mean and median of battle deaths

Your research interests

Topics in INTA:

- Diplomacy.
- Trade.
- Conflict / wars.
- Terrorism.
- Development.
- Foreign Aid.

0 $\stackrel{\Delta}{\circ}$ 0 \diamond © $\overbrace{\wedge} \diamond$

Measurement

Why?

- Social science: develop and test causal theories.
- Leader background and conflict behavior.
- Minimum wage and levels of full-time employment?
- Concepts: level of unemployment, leader background, public approval.

How?
Measures - the context of theoretical concepts

Measures

- Some are easy \rightarrow age, place of residence.
- Others?

On a scale from 1 to 7 , where 1 is extremely liberal, 7 is extremely conservative, and 4 is exactly in the middle, where would you place yourself?

Extremely liberal 1	$\mathbf{2}$				Extremely conservative	
0		$\mathbf{3}$	In the middle	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$

Measuring democracy

- How do we measure 'levels' of democratic regimes?

> Two scales

Measuring Democracies

- Does aid helps democracy promotion?

Freedom House (FH)

Standardized values of inverted mean FH score

Polity

Measuring regime types

Why the differences?
Freedom House Scale (Link) - personal and civil rights:

1. Political pluralism.
2. Electoral process and function of government.
3. Personal autonomy and individual rights.
4. Organizational rights.
5. Rule of law.

Polity V Scale (Link) - institutional features:

1. Openness and competitiveness of elections.
2. Executive constraints.
3. Regulation of participation.

Polity V Scale: USA

Polity V Scale

Problematic measurement:

- US \& its allies
- Adversaries like Russia.
- Dynamic but inconsistent (Colgan 2019-Link).

For one period, 1997-2003, Iran's Polity score jumped massively, by nine points. What accounts for this change? It coincides with the presidency of Khatami, a pro-Western reformer. Khatami tried to befriend the United States and reorient Iranian foreign policy. He also campaigned to make the government more accountable to the people. He did not, however, change or even seek to change the constitution or any of the key institutions or processes of the regime, saying, "there will not be a democratic regime in the true sense of the word. ${ }^{9}$ Moreover, even his limited reform efforts failed.

Measures \& Definitions

Operational definition: the way we describe (represent) the relevant concept in the data (indicators/variables used).

Example: US president approval

- Conceptual definition: the extent to which US adults support the actions and policies of the current US president.
- Operational definition: "On a scale from 1 to 5 , where 1 is least supportive and 5 is more supportive, how much would you say you support the job that Joe Biden is doing as president?" (survey/poll item).

Measurement Errors

The chance that there is some variation in the measures we use for our concepts.

Sources of errors:

- Data entry or respondent errors.
- Systematic Bias: US, Russia, Iran 'fluctuations'.

Variables

- Measures of concepts.
- Many values \rightarrow variables.
- Rebel background: 0,1.
- GDP/Cap; MID involvement over 5 years.
- Internationalism categories.

Types of variables

- Dependent variable (Y):
- The explained outcome.
- Response variable.
- Independent variable (X):
- Determinant of the DV.
- Explanatory / predictor variables.
- Indicator for our main theory (explanation).
- Control variables (Z):
- Additional predictors.
- Pre-treatment variables.
- Confounders.

Fit the variables

- Oil, democracy and development (2001)

Name	Description
cty_name	Country name
year	Year
logGDPcp	Logged GDP per capita
regime	A measure of a country's level of democracy: -10 (authoritarian) to 10
	(democratic)
oil	Amount of oil exports as a percentage of the country's GDP
metal	Amount of non-fuel mineral exports as a percentage of the country's GDP
illit	Percentage of the population that is illiterate
life	Life expectancy in the country

Measurement Tools: Surveys

People across world greatly concerned about climate change and willing to make sacrifices to address it, but there is less confidence in efforts to solve the problem Personal impact of global climate change

Action to address global climate change

[^0]
Terrorism: Public Survey (2016)

- ISTPP project: national security.
- Multiple attitude measures: concern, likelihood.
- Compare types of terrorism: cyber, conventional.

Terrorism Survey

```
# Proportions: concerns about types of terrorism
prop.table(table(conventional = mydata$concern_bomb,
cyber = mydata$concern_cyber))
```

\#\#	cyber			4	
\#\# conventional	1	2	3	4	
\#\#	1	0.100177830	0.019561352	0.003556609	0.000000000
\#\#	2	0.065797273	0.296976882	0.074096028	0.007705987
\#\#	3	0.012448133	0.103141672	0.148784825	0.034380557
\#\#	4	0.002963841	0.010077060	0.036751630	0.083580320

Terrorism Survey

- Individual characteristics, policy preferences.

```
# Proportions: damages from attack and respondent gender
prop.table(table(Lethality = mydata$severity_bomb,
    Gender = mydata$PPGENDER))
```

\#\#	Gender		
\#\#	Lethality	0	1
\#\#	1	0.01837582	0.01422644
\#\#	2	0.08891523	0.05690575
\#\#	3	0.17783047	0.18612922
\#\#	4	0.19383521	0.26378186

\# Proportions: Likelihood of attach and airport
prop.table(table(Attack_Coming = mydata\$likely_bomb,
Airport_Checks = mydata\$Pol_screenUS))

\#\#	Airport_Checks					
\#\# Attack_Coming	1	2	3	4	5	
\#\#	1	0.016806723	0.014405762	0.045018007	0.024609844	0.020408163
\#\#	2	0.023409364	0.054621849	0.111644658	0.105642257	0.081032413
\#\#	3	0.014405762	0.036014406	0.086434574	0.124249700	0.091836735
\#\#	4	0.008403361	0.007202881	0.022809124	0.036014406	0.075030012

Missing data: Non-response

- Why NAs?
- Item nonresponse: Refusal to answer.
- Examples: income, national origin, religion.
- Misreporting: not true attitude.
- Social desirability bias.
- Problematic issues: racial prejudice, corruption, etc.
- No access to data / no data: unemployment in developing countries.
- Don't know the answer / no opinion...

Missing data: Non-response

NAs in our survey data

```
# Responses to item: likelihood of attack (observations 1-15)
head(mydata$likely_bomb, n = 15)
\#\# [1] 22
# Responses to item: support using force (observations 1-15)
# Using logical values
head(is.na(mydata$Pol_force), n=10)
```

\#\# [1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

NAs in our data

- Aggregate view of missing values in data.
- Syntax: function(is.na(data\$variable))

```
# Sum of NAs per variable/item
sum(is.na(mydata$likely_bomb))
## [1] 53
# Proportion of NAs per variable/item
mean(is.na(mydata$likely_bomb))
```

\#\# [1] 0.03063584

NAs in our data

- Proportions of NA across variables

```
prop.table(table(Attack_Coming = mydata$likely_bomb,
    Airport_Checks = mydata$Pol_screenUS, exclude = NULL))
## Airport_Checks
\#\# Attack_Coming 112
\begin{tabular}{lllllll} 
\#\# & 1 & 0.0161849711 & 0.0138728324 & 0.0433526012 & 0.0236994220 & 0.01965317 \\
\#\# & 2 & 0.0225433526 & 0.0526011561 & 0.1075144509 & 0.1017341040 & 0.07803468 \\
\#\# & 3 & 0.0138728324 & 0.0346820809 & 0.0832369942 & 0.1196531792 & 0.08843930 \\
\#\# & 4 & 0.0080924855 & 0.0069364162 & 0.0219653179 & 0.0346820809 & 0.07225433 \\
\#\# & <NA & 0.0005780347 & 0.0005780347 & 0.0040462428 & 0.0011560694 & 0.00173410
\end{tabular}
## Airport_Checks
## Attack_Coming <NA>
## 1 0.0034682081
## 2 0.0017341040
## 3 0.0005780347
## 4 0.0005780347
## <NA> 0.0225433526
```


Study surveys with NAs

- NAs interfere with our analysis
- Return NA value.
- Must be accounted for in selected function.

```
# Calculate mean of variable with NAs: return NA
mean(mydata$Pol_survMusl)
## [1] NA
# Calculate mean of variable with NAs: accounting for missing
mean(mydata$Pol_survMusl, na.rm = TRUE)
## [1] 2.067584
```


Study surveys with NAs

Removing missing values

- Listwise deletion: remove all observation with at-least one NA.
- May substantially reduce the data.

```
# Losing observations: full dataset
nrow(mydata)
## [1] 1730
mydata.del <- na.omit(mydata)
nrow(mydata.del)
## [1] 1519
# Losing observations: single variable
length(mydata$concern_bomb)
## [1] 1730
length(na.omit(mydata$concern_bomb))
## [1] 1690
```


Visual display of data

Numerical display of data:

- Summaries: mean, median.
- Specific values: max, min.
- Distributions: range, SD.

Visuals: plots, graphs

- More comprehensive.
- Highlight important elements.
- Great for presentation.
- Audience focus on important insights

Visuals: please don't. . .

EARLY APPROVAL RATINGS

Visuals

This is an official government product. . .

Visuals: Much better

Countries connected to their primary trading partner in 2020
Exports + imports. Data: International Monetary Fund. Flags were not available for countries in black.

Visuals

BAR PLOT

- Useful for factor variables
- Shows counts and proportion for multiple categories
- How many men/women?
- Proportion of college graduates in our data?

Visuals: INTA study

Ethics in combat

Sagan and Valentino (2018): public attitudes and ethics of war.

- Survey experiments.
- Combat scenarios \rightarrow treatments.
- Support for action.

Ethics in combat

The virtue of proportional response

Iraq War (2003):

- Threshold for collateral Iraqi noncombatant deaths.
- Define "high" versus "low" value targets.
- "Due-care" principle (war in Afghanistan).

Just war: Public attitudes

Support for using artillery option

Bar plot: Base R code

\# Create proportions of support
artillery.tab <- prop.table(table(Support = wardata\$artillery_approve, exclude $=$ NULL))
\# Create barplot
barplot(artillery.tab, main = "Support: artillery option",
xlab = "Response category", ylab = "Proportion of respondents")

Support: artillery option

Artillery option: Ethical?

```
artillery.ethic <- prop.table(table(Support = wardata$artillery_ethical,
    exclude = NULL))
barplot(artillery.ethic, main = "How ethical is artillery?",
    xlab = "Response category", ylab = "Proportion of respondents")
```

How ethical is artillery?

Survey responses: Binary measure

```
artillery.binary <- prop.table(table(Support_Artillery = wardata\$approve_artill
        exclude = NULL))
barplot(artillery.binary, main = "Support for using artillery option - Yes/No",
    xlab = "Response category", ylab = "Proportion of respondents",
    names.arg = c("No","Yes"))
```

Support for using artillery option - Yes/No

Plotting alternative

Bar-plot with tidyverse

```
ggplot(wardata, aes(x=factor(prefer_artillery_dummy))) +
    geom_bar(aes(y = (..count..)/sum(..count..)), width = 0.7, fill = "darkblue")
    xlab("Support: Artillery option") + ylab("Proportion") +
    scale_y_continuous(labels=scales::percent) +
    scale_x_discrete(labels = c("0"="No","1"="Yes")) +
    ggtitle("Support for using artillery option - Yes/No") + theme_classic()
```


Visual options

Histogram

- Useful for numeric values.
- Plotting the distribution of variable.

```
# Distribution of respondents' age
wardata$age <- (2014 - wardata$birthyr)
summary(wardata$age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
##
```

- Create bins along values of interest.
- 5-year bins: $[15,20$), $[20,25),[25,30), \ldots[90,95]$

Histogram: Base R

```
hist(wardata$age, freq = FALSE, breaks = seq(from = 15, to = 95, by = 5),
    xlab = "Age",
    main = "Distribution of respondents' age")
```

Distribution of respondents' age

Histogram

Counts instead of density

```
hist(wardata$age, freq = TRUE, breaks = seq(from = 15, to = 95, by = 5),
    xlab = "Age",
    main = "Counts of respondents' age")
```

Counts of respondents' age

Artillery ethical?

```
hist(wardata$artillery_ethical, freq = FALSE,
    xlab = "How ethical is using artillery?",
    main = "Distribution of ethics of artillery")
```

Distribution of ethics of artillery

Histogram: Tidyverse

```
ggplot(wardata, aes(x=age)) +
    geom_histogram(color="black", fill="lightblue") +
    theme_classic() + ylab("Counts") + xlab("Respondents' Age") +
    geom_vline(aes(xintercept=mean(age)),
        color="black", linetype="dashed", size=1) +
    geom_text(x = 48, y = 40, label = "Mean")
```


Histogram: Tidyverse

```
ggplot(wardata, aes(x=age)) +
    geom_histogram(aes(y=..density..), colour="black", fill="lightgrey")+
    geom_density(alpha=.2, fill="#56B4E9") +
    xlab("Age") + ylab("Density") + theme_bw() + ggtitle("Survey Respondents Age") +
    geom_vline(aes(xintercept=median(age)),
            color="maroon", linetype="dashed", size=1) +
    geom_text(x = 48, y = 0.03, label = "Median", col = "red")
```


Visual Options

Boxplot

- Useful for a single variable distribution.
- Comparing multiple variables.

Scale

Exploring variables with boxplots

Base R: single variable

```
boxplot(wardata$age, ylab = "Age",
```

 main = "Distribution of respondents' age")
 Distribution of respondents' age

Comparing variables: Boxplots

Education and Age: Base R

```
boxplot(educ ~ agegroup, data = wardata, xlab = "Age groups",
    ylab = "Education categories", main = "Education - Age")
```


Comparing variables: Boxplots

Gender and using artillery

tapply(wardata\$artillery_approve, wardata\$gender, mean)

```
## 1 2
## 4.538182 4.009231
boxplot(artillery_approve ~ gender, data = wardata, xlab = "Respondent Gender",
    ylab = "Approving Artillery", names = c("Male", "Female"))
```


Boxplots: Artillery option and Age (tidyverse version)

```
ggplot(wardata, aes(x=factor(agegroup), y = artillery_approve,
color = factor(agegroup))) +
geom_boxplot() +
geom_jitter(shape=16, position=position_jitter(0.2)) +
xlab("Age groups") + ylab("Support for Artillery option") +
theme_classic() + theme(legend.position = "none")
```


Surveys

- Sampling and randomization.
- Probability sampling

Sampling

- Simple random sampling (SRS).
- Without replacement procedure.

Apply SRS

- Obtain our sampling frame.
- Problems:
- Address lists not updated.
- Who uses land-lines?
- Method of RDD - Random digit dialing.

How representative is our sample?

Data manipulations

Log transform: deal with outliers (extreme large values).
Skew the analysis of the data
summary (afghan\$population)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.0
afghan$pop_out <- ifelse(afghan$population > 2000, 1,0)
prop.table(table(outliers = afghan$pop_out))
## outliers
## 0 1
## 0.9527897 0.0472103
```


Outliers visual

Small number of villages with large population (>2000)

```
ggplot(afghan, aes(x=population)) +
    geom_histogram(color="black", fill="maroon") +
    theme_classic() + ylab("Counts") + xlab("Population")
```


Log transform

Use natural log to reduce outliers effect
afghan\$pop_1 <- log(afghan\$population, 10)

```
ggplot(afghan, aes(x=pop_l)) +
    geom_histogram(color="black", fill="maroon") +
    theme_classic() + ylab("Counts") + xlab("Population: Logged")
```


Wrapping up Week 4

Summary:

- Measurement - why? what's so important? Erros in measurement.
- Operational and conceptual definitions.
- Surveys: sampling, randomization, challenges.
- Visuals: why? what not to do? types of plots.
- R work: counting NAs, na.omit(), plots using ggplot and base R , log transform.
- R task details - due Oct. 4th

[^0]: Note: Percentages are medians based on 17 publics.
 Source: Spring 2021 Global Attitudes Survey. Q31, Q32. Q33b, Q35
 "In Response to Climate Change, Citizens in Advanced Economies Are Willing To Alter How They Live and Work"
 PEW RESEARCH CENTER

