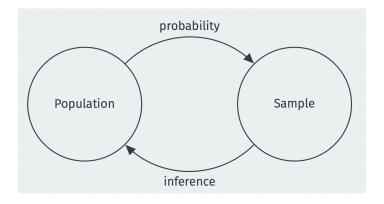
Bush 631-600: Quantitative Methods

Lecture 12 (11.22.2022): Uncertainty vol. III

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University


Fall 2022

What is today's plan?

- Calculating uncertainty: the full package.
- Linear regression model estimator.
- Assumptions for OLS estimators.
- Bivariate and multivariate models.
- R work: lm(), summary(lm())

Our data - our research interests

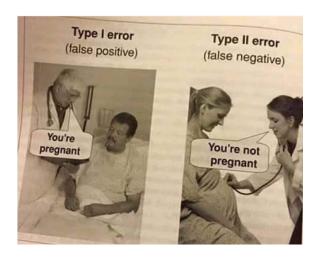
Making inferences from data to population

Statistical hypothesis testing

- Probabilistic proof by contradiction
- Assume the contrast to our expectations is not possible.
- ightharpoonup Assume ightarrow difference (sample and analyst) are zero.
- ▶ Incorrect? → differences exist.
- Senior analyst may have been wrong.
- ▶ We can never **fully** reject a hypothesis (no 100% certainty).

Procedure for hypothesis tests

- Steps for testing:
 - 1. Define null and alternative hyps $(H_0; H_1)$.
 - 2. Select *test statistic* and level of test (α) .
 - 3. Derive reference distribution.
 - 4. Calculate p-values.
 - 5. Make a decision: reject/retain.
- Decision rule:
 - Reject null if p-value is below α
 - Otherwise retain the null or fail to reject.
- Common thresholds:
 - ▶ $p \ge 0.1$: "not statistically significant".
 - p < 0.05: "statistically significant".
 - ▶ p < 0.01: "highly significant".</p>


Test errors

- ▶ $p = 0.05 \rightarrow$ extreme data only happen in 5% of repeated samples (if null is true).
- $ightharpoonup \sim 5\%$ of time we reject null that is true!
- Types of errors:

	H_0 True	H_0 False
Retain H_0	Awesome!	Type II error
Reject H_0	Type I error	Good stuff!

Test errors

▶ What does these errors mean?

One sample test

The z-statistic:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Or:

$$Z = \frac{observed - null}{SE}$$

- ▶ How many SEs away from the null guess is the sample mean?
- **Small samples problem**: uncertainty about \bar{X} distribution.
- Find t-statistic instead:

$$T=rac{ar{X}-\mu}{\hat{SE}}pprox t_{n-1}$$

Two sample tests

- ▶ Goal: learn about population difference in means.
- Compare differences b-w multiple groups: same testing procedures.
- Define:
 - ▶ Null PATE: $H_0: \mu_T \mu_C = 0$
 - ▶ Alt. PATE: $H_1 : \mu_T \mu_C \neq 0$
 - Test statistic: diff-in-means estimator.
 - z-score for two sample z-test.
- Are the differences in sample means just random chance?

Two sample test

▶ Run a **two sample t-test** \rightarrow t.test()

What we did? and next...

- ▶ So far, we covered uncertainty in:
 - Sample proportions (Trump vs. the polls).
 - ► Sample means (Israel thermometer scores).
 - ▶ Differences in sample means (experimental data, leaders' type).
- What about our regression estimates?
- ▶ Much uncertainty about them too!

Least squared

- ▶ Assumption: model ~→ Data generation process (DGS)
- **Parameters/coefficients** (α, β) : true values unknown.
- Use data to estimate $\alpha, \beta \Longrightarrow \hat{\alpha}, \hat{\beta}$
- Predictions:
 - ▶ Use the regression line.
 - ► Calculate fitted value (≠ observed value)

$$\hat{Y} = \hat{\alpha} + \hat{\beta} * x$$

Linear model elements

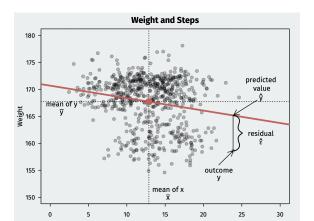
- Residual/prediction error: the difference b-w fitted and observed values.
- Real error is unknown $\Rightarrow \hat{\epsilon}$

$$\hat{\epsilon} = Y - \hat{Y}$$

Linear model estimation

Least squared:

- ▶ A method to estimate the regression line.
- ▶ Use data (values of Y & X_i).
- 'Select' $\hat{\alpha}, \hat{\beta}$ to minimize SSR.


$$SSR = \sum_{i=1}^{n} \hat{\epsilon}^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta} * X_i)^2$$

Linear regression in R

Fit the model

- ▶ Syntax: $Im(Y \sim x, data = mydata)$
- ightharpoonup Y = dependent variable(s).

How does it look like?

Linear models in RCT

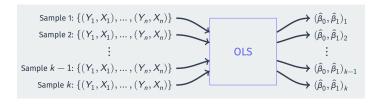
Binary dependent variable:

- ▶ Slope coefficient (β) = diff-in-means estimator.
- \triangleright $\hat{\beta}$: estimated average treatment effect.
- Why works?
 - lacktriangleright Randomization ightarrow causal interpretation
 - ▶ Slope (β) : the average change in Y when X increases by 1 unit.

When X is binary:

- ► Treatment: yes or no.
- ▶ X change by 1 unit \rightarrow no to yes.
- Y changes as well (measured in percentages).

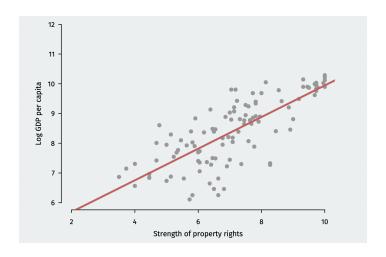
Building linear models


- ► Leader background and nuclear technology pursuit (2015)
- ► Rebel or not?
- ▶ Our model \rightarrow rebel exp. & nukes technology.
- $Y_i = \beta_0 + \beta_1 * RebelExp_i + \epsilon_i$
- ▶ $P(Nukes) = rebel experience and <math>\epsilon$ (error).

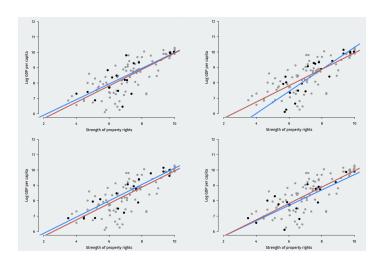
Uncertainty in regression

- Quantify uncertainty in linear models
- Model parameters estimators
- ► What estimator? **least squared**.

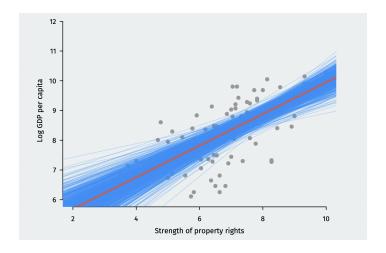
Least squared estimator


► We 'plug-in' data and get estimates.

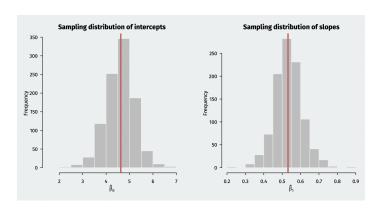
Estimators values are uncertain.


Uncertainty of least squared estimators

▶ Data: Relationship between strength of property rights and GDP.


Simulation Again?

► Sample 30 countries and calculate Im(GDP ~ Property.rights)


Simulation Again?

▶ Multiple iterations of the model within the data.

OLS sampling distributions

▶ Variations of intercept $(\hat{\beta}_0)$ and slope $(\hat{\beta}_1)$

Least squared estimator

- Uncertainty in least squared estimator:
 - ▶ Generate reference distribution.
 - Calculate SEs.
 - ► Construct 95% Cls.
 - Run hypotheses tests.
 - Results are 'statistically significant', or not.
 - ▶ Is our estimator different than zero? (reject the null)

Assumptions

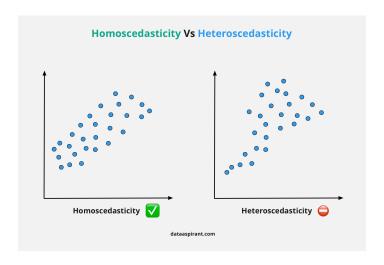
- Assumptions for regression estimates:
- (1) Exogeneity: mean of ϵ_i does not depend on X_i

$$E(\epsilon_i|X_i) = E(\epsilon_i) = 0$$

(2) **Homoskedasticity**: variance of ϵ_i does not depend on X_i

$$V(\epsilon_i|X_i) = V(\epsilon_i) = \sigma^2$$

Problem of exogenous factors


- ▶ Confounders between X_i and Y_i
- ▶ Factors in ϵ_i that are related to X_i
- ► Why?
- ▶ Business background (X_i) → defense spending (Y_i)
- Socioeconomic background $o \epsilon_i$
- ightharpoonup But Socioeconomic background ightarrow Business experience, so. . .
- ▶ Is Y_i due to business experience?

Problem of exogenous factors

- ▶ RCTs → no exogeneity problem.
- Randomized treatments!
- Severe issue for observational studies.
- ▶ Rebel background → nuclear weapons pursuit.
- lackbox Perhaps more conflicts ightarrow pursue advanced technology.

Homoskedas... what?

▶ When spread of Y_i depends on X_i

OLS properties

$$Y_i = \beta_0 + \beta_1 * X_i + \epsilon_i$$

- Our estimates: $\hat{\beta}_0$, $\hat{\beta}_1$ are r.v.s.
- Equal to true value? (population parameters)
- How spread are they around their center?
- Estimate the SE $ightarrow \hat{SE}(\hat{eta_1})$
- Next? construct Cls...
- Run hypotheses tests.

Putting everything together

- ► Hypotheses:
 - ▶ $H_0: \beta_1 = 0$
 - ▶ $H_a: \beta_1 \neq 0$
- lacktriangle Our estimators: \hat{eta}_0,\hat{eta}_1
- ► SE and Cls:
 - $\hat{\beta_0} \pm 1.96 * \hat{SE}(\hat{\beta_0})$
 - $\hat{\beta_1} \pm 1.96 * \hat{SE}(\hat{\beta_1})$
- ► Hypotheses test:
 - ► Test statistic: $\frac{\hat{\beta}_1 \hat{\beta}_1^*}{\hat{SE}(\hat{\beta}_1)} \sim N(0,1)$
 - $\hat{\beta}_1$ is statistically significant if p < 0.05.

Now with data

► Rebel experience and pursuit of nuclear tech (2015)

```
head(nukes, n=9)
## # A tibble: 9 x 76
                                                  inday inmonth inyear starty
##
    ccode idacr vear leadid30 leader~1 startdate
##
    <dbl> <chr> <dbl> <chr>
                               <chr>
                                       <date>
                                                  <dbl>
                                                          <dbl>
                                                                <dbl> <date>
## 1
        2 USA
                 1945 A2.9-43 Rooseve~ 1933-03-04
                                                     4
                                                              3
                                                                 1933 1945-0
## 2
        2 USA
                 1945 A2.9-46
                              Truman
                                       1945-04-12
                                                     12
                                                                 1945 1945-0
## 3
        2 USA
                 1946 A2.9-46
                              Truman 1945-04-12
                                                     12
                                                             4
                                                                 1945 1946-0
## 4
        2 USA 1947 A2.9-46 Truman 1945-04-12
                                                     12
                                                             4
                                                                 1945 1947-0
## 5
        2 USA
                 1948 A2.9-46
                                       1945-04-12
                                                     12
                                                                 1945 1948-0
                              Truman
                                                             4
## 6
        2 USA
                 1949 A2.9-46 Truman 1945-04-12
                                                     12
                                                             4
                                                                 1945 1949-0
## 7
        2 USA
                 1950 A2.9-46 Truman 1945-04-12
                                                     12
                                                             4
                                                                 1945 1950-0
## 8
        2 USA
                 1951 A2.9-46 Truman 1945-04-12
                                                     12
                                                             4
                                                                 1945 1951-0
## 9
        2 USA
                 1952 A2.9-46 Truman 1945-04-12
                                                     12
                                                             4
                                                                 1945 1952-0
## # ... with 66 more variables: enddate <date>, outday <dbl>, outmonth <dbl>,
## #
      outyear <dbl>, yearlyduration <dbl>, entry <dbl+lbl>, exit <dbl+lbl>,
## #
      pursuit <dbl>, initiation <dbl>, explore <dbl>, bombprgm <dbl>,
## #
      pursuitjg <dbl>, pursuitsw <dbl>, rebel <dbl>, milservice <dbl>,
## #
      jcrevolutionary <dbl>, revolutionaryleader <dbl>, irregular <dbl>,
## #
      fiveyear <dbl>, polity2 <dbl>, total <dbl>, spally <dbl>, NCA67 <dbl>,
## #
      gdpcap <dbl>, lngdpcap <dbl>, npt <dbl>, openness <dbl>, rivalry <dbl>,
      Use 'colnames()' to see all variable names
```

Rebels and Nukes (2015)

OLS regression models in R

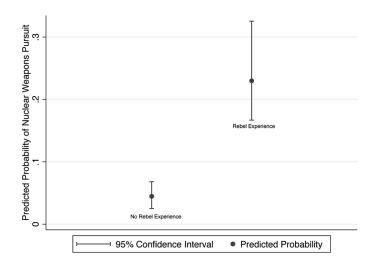
```
lm(pursuit ~ rebel, data = nukes)

##
## Call:
## lm(formula = pursuit ~ rebel, data = nukes)
##
## Coefficients:
## (Intercept) rebel
## 0.01051 0.03767
```

Rebels and Nukes (2015)

Simple/bivariate regression

```
summary(lm(pursuit ~ rebel, data = nukes))
##
## Call:
## lm(formula = pursuit ~ rebel, data = nukes)
##
## Residuals:
##
                 10 Median 30
       Min
                                          Max
## -0.04819 -0.04819 -0.01051 -0.01051 0.98949
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.010513   0.002295   4.582   4.68e-06 ***
## rebel 0.037673 0.003513 10.725 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1598 on 8460 degrees of freedom
##
    (390 observations deleted due to missingness)
## Multiple R-squared: 0.01341, Adjusted R-squared: 0.0133
## F-statistic: 115 on 1 and 8460 DF, p-value: < 2.2e-16
```

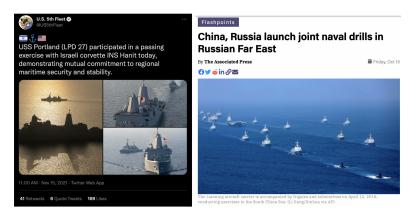

Rebels and Nukes (2015)

Multivariate regression: account for confounders

```
summary(lm(pursuit ~ rebel + milservice + polity2, data = nukes))
##
## Call:
## lm(formula = pursuit ~ rebel + milservice + polity2, data = nukes)
##
## Residuals:
##
       Min
                 10 Median
                                          Max
## -0.06587 -0.04408 -0.02544 -0.01020 0.99682
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0073899 0.0027782 2.660 0.00783 **
## rebel
              0.0320096 0.0044238 7.236 5.08e-13 ***
## milservice 0.0217914 0.0045106 4.831 1.38e-06 ***
## polity2 0.0004679 0.0002801 1.670 0.09489 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1672 on 7684 degrees of freedom
## (1164 observations deleted due to missingness)
## Multiple R-squared: 0.01596. Adjusted R-squared: 0.01558
## F-statistic: 41.54 on 3 and 7684 DF, p-value: < 2.2e-16
```

OLS coefficient interpretation

► Rebel experience and nuclear technology (2015)



OLS Multivariate regression

- ▶ **Remember**: correlation does not mean causation.
- Multiple confounders → same process:
 - Cls are constructed the same for all $\hat{\beta}_j$.
 - ▶ Hypothesis tests also run the same for all $\hat{\beta}_j$.
 - p-values have the same interpretation.
- ▶ Interpretation of $\hat{\beta}_j$:
 - A change in Y_i is associated with a one-unit increase in X_i when...
 - All other variables are held constant (at mean value, usually).

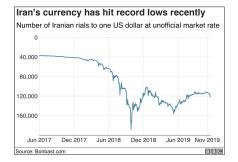
OLS regression models: FP research

▶ Joint military exercises and conflict (2021)

JME and conflict

- Under what conditions violence is more likely? who will initiate?
- Outcome conditioned by alliance partnership.
- Use two-stage model:
 - 1. Selection into conflict.
 - 2. Effects of JMEs.
- ▶ Data: directed dyad-year (1973-2003).

JME and military conflict


Table 2. Main Results for the Effects of JMEs and Alliances on Conflict Escalation.

	Targets		Participants		
	Model I:	Model 2:	Model 3:	Model 4:	
JME	-0.311***		-0.573***		
	(0.100)		(0.101)	2142	
Non-Ally JME		-0.050		-0.148	
		(0.146)		(0.141)	
Ally JME		-0.443***		-0.823***	
		(0.117)		(0.124)	
Alliances	0.013*	0.016**	-0.009	-0.004	
	(0.007)	(0.007)	(800.0)	(0.008)	
Joint Democracy	-0.753***	-0.745 ***	-0.730***	-0.720***	
	(0.092)	(0.092)	(0.089)	(0.089)	
CINC	9.042***	8.901***	10.800***	10.597***	
	(1.114)	(1.114)	(1.063)	(1.063)	
UNGA	-0.055	-0.050	-0.047	-0.041	
	(0.045)	(0.045)	(0.044)	(0.044)	
Trade	0.00001	0.00001	0.00001	0.00001	
	(0.00000)	(0.00000)	(0.00000)	(0.00000)	
Lagged DV	6.631***	6.623***	6.171***	6.159***	
ω	(0.092)	(0.092)	(0.092)	(0.092)	
Constant	-6.970***	_6.984 ^{***}	—`6.945 ^{***}	_6.967 ^{***}	
	(0.272)	(0.272)	(0.271)	(0.271)	
N	541,920	541,920	541,920	541,920	
AIC	7,757.394	7,753.953	8,415.870	8,402.368	
Log Likelihood	-3,839.697	-3,836.977	-4,168.935	-4,161.184	

Note: Coefficients Represent Logistic Regression Coefficients.

 $^*p < 0.1; ^{**}p < 0.05; ^{***}p < 0.01.$

- ► How sanctions affect stock markets' in targeted countries (2021).
- ▶ Imposing costs on stock market \rightarrow behavior change.
- Account for types of sanctions.
- ▶ The cumulative effects of sanctions over time.
- ▶ Data: monthly stock market values for 66 countries (1990-2005)

- Types of sanctions matter:
 - Import: restrict access to global markets and reduce firm revenues.
 - ▶ Also harm exporters: investment shifts away from losing firms.
 - Export: limits on exports thus loss of hard currency.
 - Less efficient as import firms make-up for lost capital and goods.
- Example: Iraqi oil boycott (1990).
- Cumulative sanctions regime:
 - More is better.
 - But decreasing marginal effect.
 - Initial sanctions are more useful
 - Target adjusts to additional restrictions.

- Empirical analysis:
 - OLS regression models.
 - ADL: account for time lags.
- Results:
 - Negative effect on stocks.
 - Type matters, as well as number of sanctions.
 - Sender state also matters.
- Models 1&2: full and reduced set of controls.
- ▶ Models 3-5: sanctions types.
- ▶ Models 6&7: Comparing G20 to non-G20 countries.

International Aid and civilian casualties

Apr 13, 2016

Balochistan: Pakistan Army Kills Over 35 Civilians and Carries Out Mass Abductions

International Aid and civilian casualties

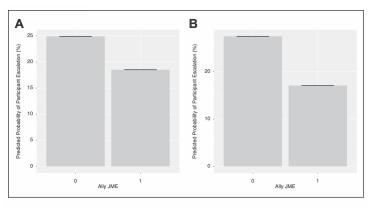
- Are civilians facing risks due to aid distribution?
- Two mechanisms:
 - 1. Persuasion: reduce incentives to target civilians (military).
 - 2. Predation: adverse incentives for resource capturing and extended collective violence (development).
- ▶ Data: military and ODA flows in 135 countries (1989-2011).

Military and development aid flows

Variables	1(a) U.S. military aid	1(b) Development aid	1(c) Full model	1(d) Lagged DV	1(e) Excluding outliers
OSV (t-1)				0.000**	0.0148**
				(0.000)	(0.00666)
U.S. military aid (logged, lagged)	-0.338***		-0.368^{***}	-0.348***	-0.187**
	(0.109)		(0.097)	(0.101)	(0.090)
Development aid (logged, lagged)		0.237**	0.366***	0.371***	0.269**
		(0.117)	(0.135)	(0.136)	(0.130)
State strength	-0.000	-0.002***	0.000	-0.000	0.000
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Polity2	-0.256***	-0.117 [*]	-0.167**	-0.151 [*]	-0.009
	(0.075)	(0.069)	(0.079)	(0.079)	(0.045)
Rebel OSV (lag)	-0.000	0.001	-0.000	-0.001	-0.001
-	(0.001)	(0.002)	(0.000)	(0.001)	(0.001)
Intrastate conflict	4.717***	4.858***	5.230***	5.463***	3.653***
	(0.646)	(0.634)	(0.709)	(0.816)	(0.621)
Trade openness	0.000	0.000	0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Previous regime change	2.107***	2.071***	2.036***	2.002***	2.045***
	(0.380)	(0.520)	(0.359)	(0.368)	(0.382)
Oil production	-0.299***	-0.237***	-0.223**	-0.235***	-0.109
	(0.087)	(0.074)	(0.091)	(0.090)	(0.097)
Ethnic exclusion	0.754***	0.776***	0.765***	0.724***	0.263
	(0.210)	(0.202)	(0.215)	(0.224)	(0.172)
Ethnic fractionalization	0.624	0.362	-0.201	-0.163	-0.286
	(0.799)	(0.852)	(0.814)	(0.817)	(0.901)
Constant	4.112**	-2.553***	2.301	1.965	-0.300
	(1.759)	(0.975)	(1.791)	(1.831)	(1.523)
Observations	2,032	2,791	2,032	2,032	2,005

Note. Robust standard errors in parentheses.

^{***}p < .01, **p < .05, *p < .1


What to do with reg models?

- Regression models:
 - Useful tool to assess causality.
 - Pack a lot of information.
 - ► Can be hard to interpret.
- So, what to do?
 - Substantive results.
 - Predictions!!
 - Sub-groups and effects by types.

Show meaningful results!

Reg models to presentations

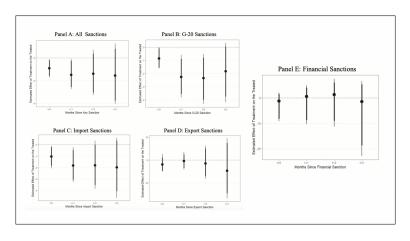

▶ Predictions → quantity of interest

Figure 3. Predicted probability of *Escalation* as a function of *Ally JME*, with 95 percent confidence intervals. Results obtained from a Heckman selection model and are conditional upon conflict onset. (A) Targets. (B) Participants.

Reg models to presentations

Predicting sanction types effectiveness

Wrapping up Week 12

Summary:

- ► Testing uncertainty: the full package.
- Linear regression model estimator.
- Assumptions for OLS estimators.
- Bivariate and multivariate models.
- Interpretation of β coefficient.
- Reading a regression table.