Bush 631-600: Quantitative Methods Lecture 10 (11.08.2022): Uncertainty vol. I

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Fall 2022

What is today's plan?

- Calculating uncertainty: detecting 'real' findings.
- From r.v.s. to estimators.
- Types of estimators: data, surveys, experiments.
- Simulations.
- Confidence intervals
- R work: table(), loops, simulations, plots.

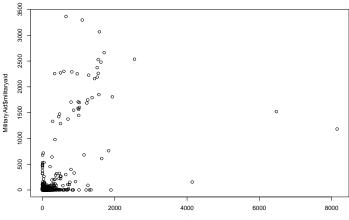
Final project

Research proposal lessons:

- Clear objective / research question.
- Literature what do we know?
- Focus on concepts, not measures.

Final project

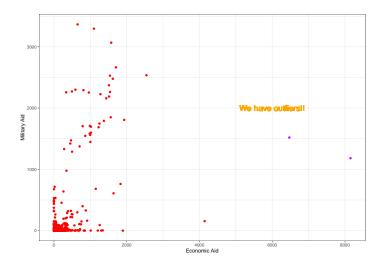
Data report:


- Succinct description of topic and importance.
- What are my central arguments?
- Clear variable names.
- Variable values.

Visuals?

- Labels (axis, ticks).
- Title.
- Attention grabbing use colors and add relevant text.

Useful visuals


What looks better?

MilitaryAid\$economicaid

Useful visuals

Or this. . .

We have findings!!!

- Data patters are systematic? Or noise?
- Our estimates \rightarrow real relationship or random?
- Using probability calculations.

Events to numbers

- Random variables: map outcomes to numbers.
- Assess quantities in population \rightarrow we cannot.
- Use sample: r.v.s and the values of concepts.
- Define a random variable X:
 - ▶ X=1 if 'random' person supports president, 0 otherwise.
 - $\bar{X} = \mathsf{E}[\bar{X}] = \mu$??
 - Yes!!
 - Large samples to the rescue.

Uncertainty on the diamond

2022 MLB Predictions

Updated after every game.

Standings Ga	ames	Pitchers					Teams		~
						CHAN	CE OF MAKING		
TEAM \$			DIVISION \$	TEAM RATING \$	1-WEEK CHANGE \$	DIV. SERIES \$	LEAGUE CHAMP. \$	WORLD SERIES \$	WIN WORLD SERIES
🚯 Astros 3-1	0, 3-0		AL West	1588	+7	1	1	95%	64%

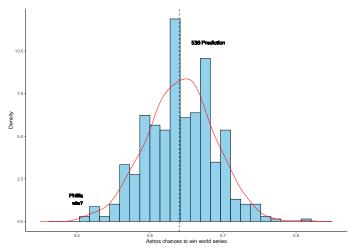
+6

33%

1547

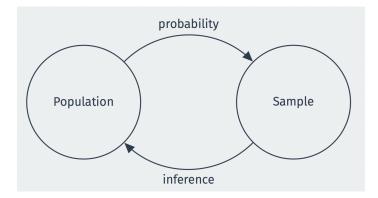
No shot for the Phils?

NL East


Phillies 3-1, 4-1

What does 64% mean?

Uncertainty on the diamond


```
# Simulate the World series
sim <- 500
draws <- rbinom(sim, size = 100, prob = 0.64) / 100
mean(draws)</pre>
```

[1] 0.64176

Our data - our research interests

Making inferences from data to population

Uncertainty

Research questions:

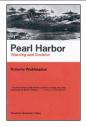
- 1. President's gender and FP actions?
- 2. Regime type and frequency of terrorism?
- 3. Regional trade zone and countries trade balance?
- ▶ Treatment / Factor has an effect:
 - Women are more aggressive in defense spending and public threats.
 - Democratic regimes experience more terror incidents.
 - Regional trade zone increased the trade balance with neighbors.
- Are these effects real or just noise?

Uncertainty in data: US and WW II

Pearl Harbor (December 7, 1941)

"Signals to noise ratio" (Wohlstetter 1962)

Diplomatic .vs. military intelligence (Kahn, 1991)



David Kah

THE INTELLIGENCE FAILURE OF PEARL HARBOR

The set of the set of

in the Cost government, Resolut was codebeeaker; he had charge of the train trying to crack the most secret diplomatic cipher of the Empire of Japan, a machine that American crystanalyst colled PURPLE and vithin hours on that day, Friday, September 20, he would be colebrating one of the grunnet momenta in American cryptology.

Uncertainty in data: 9/11 Intelligence failure

1993 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	MEMORANDUM FOR:					
:	FROM:					
	OFFICE:			· .		
	SUBJECT:	Re: Khalid Al-Mihdhar	<u> </u>			
•	REFERENCE:				• .	
	Original Text of Original Text of				1. 1. 1.	
•			· · · · ·			
	TO: FROM: OFFICE:					
	DATE: 08/21/2001 04:05 SUBJECT: Re: Khalid Al-Mihdh					
	WHAT?:?? Same passport numb to the US in the same January tim the party in a cable					
Jour of					× .	
	as I was reviewing al passport. I asked INS to check ar 2000 and listed the Los Angeles looked through traffic and could no	as his destination		he U.S. on 15 J	anuary	
nine contractor una ele cualcada de ca	I'll be sending to FBI to pass January. Maybe there is somethin the morning, and will then be mee will give her a head's up. Let me l	ting with in the ea	s run his name by l rly afternoon to tall	Ressam? I will i	be here in	• •

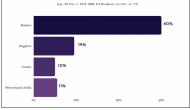
Estimation

• *Quantity of interest* in population.

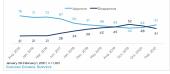
- Point estimation \rightarrow a 'best guess'.
- Many possible point estimators:
 - Population mean (μ) : elections turnout.
 - 'Special population' mean (μ): likelihood of joining international treaty.
 - \blacktriangleright Variance of a r.v. (σ^2): variation in support for sanctioning China/Russia.
 - ▶ Population ATE (µ₁ − µ₀): difference b-w treatment and control groups.

Estimation

Estimator θ



The UK, the United States and Australia have agreed a landmark defence and security partnership that will defend our shared interests around the world


ASSOCIATION OF MARSHALL SCHOLARS

IMPACT OF AUKUS SUBMARINE DEAL ON GLOBAL SECURITY

How to estimate public opinion?

the following international agreements? (% participate) The agreement that lifts some international economic sanctions against Iran in exchange for strict limits on its nuclear weapons

Random sample of respondents.

Estimating with public samples

- ► Assume: X₁...X_n iid Bernoulli distributed random variables.
- Proportion of support for deal \rightarrow p.
- An estimate: one realization of estimator (random variables right??)

Estimate:

$$\hat{ heta} = ar{X_n} o$$
 population p

Still, an estimation...

- Is our estimate good?
- **Estimation error**: difference with 'true value'.
- Error = $\bar{X_n} p$
- p is unknown, now what?
- Calculate average magnitude of estimation error.
- Hypothetical repetition of sampling:
 - Multiple estimate values $(\hat{\theta})$
 - Multiple estimation error values.

Estimation

- Repetition \rightarrow sampling distribution of $\hat{\theta}$
- Estimation error / bias using expectations
- ► bias = $E(est.Error) = E(Estimate truth) = E(\bar{X}_n) p = p p = 0$
- Unbiasedness: Sample proportion is on average equal to the population proportion.
- Accuracy over multiple samples (not a single-shot survey)
- Estimator is unbiased

Estimators in experiments

- Treatment(s) and control groups.
- *Estimator* \rightarrow diff-in-means.
- Sample Average Treatment Effect (SATE):

$$SATE = \frac{1}{n} * \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

Diff-in-means estimator

- Random sampling of population.
- Random assignment into treatment(s).
- Population Average Treatment Effect (PATE)
- PATE = E[Y(1) Y(0)]
- Diff-in-means estimator is unbiased

Unbiased estimator

Monte-Carlo simulations

```
# Create Sample, Control and treatment groups (means and SDs)
n <- 500
mu0 <- 0
sd0 <- 1
mu1 <- 1
sd1 <- 1
# Create sampling distributions
y0 <- rnorm(n, mean = mu0, sd = sd0)
head(y0)</pre>
```

[1] -0.99274116 -1.32054615 -2.79817571 0.48616276 -0.03684791 1.41178990
y1 <- rnorm(n, mean = mu1, sd = sd1)</pre>

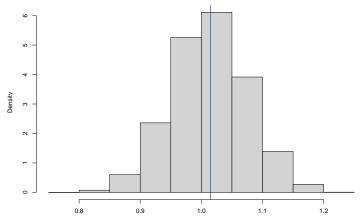
```
# calculate diff-in-means (SATE)
tau <- y1 - y0
head(tau)</pre>
```

```
## [1] 2.0929783 4.1806412 2.9382569 0.6697544 1.5358116 -0.2688237
SATE <- mean(tau)
SATE</pre>
```

[1] 1.014856

Increasing the sample

Simulate & randomly assign treatment


```
# Repeat
sims <- 5000
diff.means <- rep(NA,sims)
for (i in 1:sims){
    treat <- sample(c(rep(1, n/2), rep(0, n/2)), size = n, replace = FALSE)
    diff.means[i] <- mean(y1[treat == 1] - mean(y0[treat == 0]))
}
est.error <- diff.means - SATE
summary(est.error)</pre>
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.2459536 -0.0418603 -0.0015130 -0.0008485 0.0408982 0.2020634

SATE estimator (large sample simulation)

```
hist(diff.means, freq = FALSE)
abline(v=SATE, col = "blue")
```

Histogram of diff.means

diff.means

Estimator distribution

Calculate variation with SD (estimator)

```
# SD of estimator
sd(diff.means)
```

```
## [1] 0.06236986
sqrt(mean((diff.means - SATE)^2))
```

[1] 0.0623694

- Calculate SD only with a simulation.
- Reality \rightarrow one sample, SD is unknown.

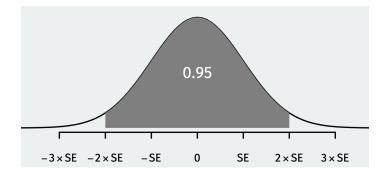
SD of sample

- Standard error: estimated degree of deviation from expected value
- Variability of our (single!) sample

$$\checkmark \sqrt{\hat{V}(\hat{Y})} = \sqrt{\frac{\bar{Y}*(1-\bar{Y})}{n}}$$

```
# Simulate and add SE calculate
sims2 <- 5000
diff.means2 <- rep(NA,sims)
diff.se <- rep(NA, sims)
for (i in 1:sims){
    Y0 <- rnorm(n, mean = mu0, sd = sd0)
    Y1 <- rnorm(n, mean = mu1, sd = sd1)
    treat <- sample(c(rep(1, n/2), rep(0, n/2)), size = n, replace = FALSE)
    diff.means2[i] <- mean(Y1[treat == 1] - mean(Y0[treat == 0]))
    diff.se[i] <- sqrt(var(Y1[treat == 1])/(n/2) + var(Y0[treat == 0])/(n/2))
}
sd(diff.means2)
## [1] 0.08911718
mean(diff.se)
```

[1] 0.08936297


Broader approach to estimator distribution

Quantities beyond means and SD.

Confidence Intervals

- Range of true values of estimator.
- Range of plausible values.
- Rest on assuming repeated sampling.

Chance errors intervals

- Normal distribution empirical rule.
- ▶ 95% of values within 2 SD, in sample \rightarrow 2 SEs.
- \blacktriangleright Range of possible values $\rightsquigarrow \pm$ 1.96 SEs

BYO Cls

Constructing confidence intervals.

- (1) What confidence level?
- Conventional: 95%.
- ▶ Defined using α(0 − 1) =?

• (2) CI:
$$100 * (1 - \alpha)\% = \bar{Y} \pm z_{\alpha/2} * SE$$

• $\alpha = 0.05 \rightarrow 95\%$ Cl.

Confidence Intervals

► Formal CI:

$$CI(\alpha) = (\bar{X_n} - z_{\alpha/2} * SE, \bar{X_n} + z_{\alpha/2} * SE)$$

• Critical value
$$= (1 - lpha/2)$$

α	Confidence level	Critical value $z_{\alpha/2}$	R expression
0.01 0.05	99% 95%	2.58 1.96	qnorm(0.995) qnorm(0.975)
0.1	90%	1.64	qnorm(0.95)

Confidence intervals

- Finding the critical values
- qnorm() function: define lower.tail = FALSE

```
# find critical values
qnorm(0.05, lower.tail = FALSE)
## [1] 1.644854
qnorm(0.025, lower.tail = FALSE)
## [1] 1.959964
qnorm(0.005, lower.tail = FALSE)
```

[1] 2.575829

Cls in R

Cls for our JCPOA survey

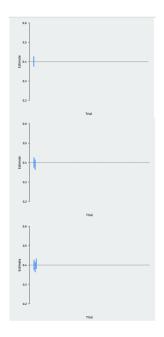
```
# Sample, Mean support and SE
n <- 2000
x.bar <- 0.6
Iran.se <- sqrt(x.bar * (1-x.bar)/n)
Iran.se</pre>
```

```
## [1] 0.01095445
# CIs
c(x.bar - qnorm(0.995) * Iran.se, x.bar + qnorm(0.995) * Iran.se) #99%
```

```
## [1] 0.5717832 0.6282168
c(x.bar - qnorm(0.975) * Iran.se, x.bar + qnorm(0.975) * Iran.se) #95%
```

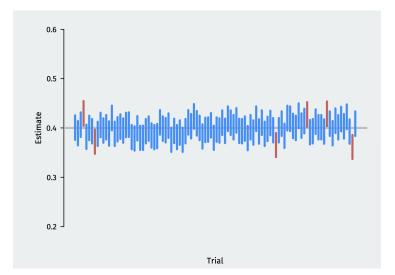
[1] 0.5785297 0.6214703
c(x.bar - qnorm(0.95) * Iran.se, x.bar + qnorm(0.95) * Iran.se) #90%

[1] 0.5819815 0.6180185

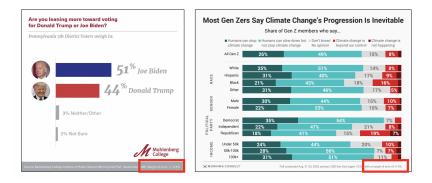

Interpretation

- How to interpret CIs?
- \blacktriangleright NO \rightarrow 95% chance true value is within the interval.
- Why? Estimator is unknown (value is 0/1).
- \blacktriangleright YES \rightarrow Interval contains true value 95% of the times in repeated random samples.
- Not the Wait What? pic again right???
- One more time:

Interval contains the true value 95% of the times in repeated random samples


Simulate CIs

- Policy: Global Co₂ emissions reduction
- Sample = 1500 respondents
- p = 0.4 (assumed support)
- Calculate 95% Cls in multiple samples


Simulate Cls

How many overlap with 'true' support?

Polls: the 'fine print'

Margin of error

Margin of error

- ► MOE: half-width of a 95% CI.
- ► JCPOA sample proportion of support = 0.6
- JCPOA sample MOE = ± 3 %
- JCPOA 95% CI: [57%,63%]

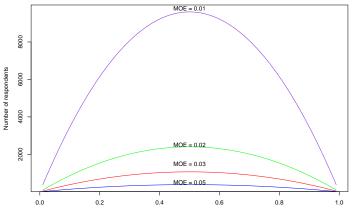
Margin of error

$$MOE = \pm z_{0.025} * SE \approx \pm 1.96 * \sqrt{\frac{\bar{X}_n * (1 - \bar{X}_n)}{n}}$$

What is the minimum sample size?

- Popular stage in research design.
- Conduct before fielding the survey.

MOE and Sample size


- Calculate multiple proportions of support.
- Define your MOE: 1% , 2%, 3%, 5%
- Possible sample sizes

```
# Define MOEs
moe <- c(0.01, 0.02, 0.03, 0.05)
# Define vector of proportion of support (0-100 by 1%)
prop <- seq(from = 0.01, to = 0.99, by = 0.01)
# Using MOE and proportion for possible sample sizes
num <- 1.96^2 * prop * (1-prop) / moe[1]^2
head(num, n=10)</pre>
```

[1] 380.3184 752.9536 1117.9056 1475.1744 1824.7600 2166.6624 2500.8816
[8] 2827.4176 3146.2704 3457.4400

MOE and Sample size

- Plotting our analysis
- CLT, SE and sample size...

Proportion of support

Cls & Experiments

- Quantify uncertainty for causal effect analysis.
- JCPOA support among Americans \rightarrow good!
- \blacktriangleright Variations of JCPOA support among groups \rightarrow even better!
 - $\blacktriangleright \ \mathsf{Men} \longleftrightarrow \mathsf{Women}.$
 - $\blacktriangleright \ {\sf Young} \longleftrightarrow {\sf Old}.$
 - Vets (military) \longleftrightarrow no military background.
- Estimator: population ATE

• $\mu_T - \mu_C$

Let's reduce plastics

- Environmental policy: 'fighting-back' against plastic bags.
- Policy, main aspects financial incentives:
 - 1. Financial incentives: cash back.
 - 2. Financial incentives: fee for plastic bags.
- Define outcome: $X_i = 1$ if support policy, 0 otherwise.
- Sample mean (treatment: cash back), $\bar{X_T} = 0.43$
- Sample mean (control: plastics fee), $\bar{X_C} = 0.32$

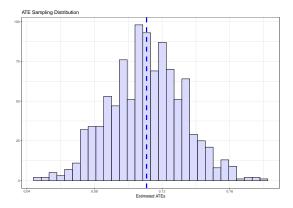
$$\hat{ATE} = \hat{X_T} - \hat{X_C} = 0.11$$

Simulating policy support

- Sample diff-in-means on average equal to population diff-in-means
- Still, some variation

```
# Simulate our experiment in population
xt.sims <- rbinom(1000, size = 1000, prob = 0.43) / 1000
head(xt.sims)</pre>
```

```
## [1] 0.423 0.438 0.414 0.459 0.428 0.429
xc.sims <- rbinom(1000, size = 1000, prob = 0.32) / 1000
head(xc.sims)</pre>
```


[1] 0.326 0.321 0.314 0.304 0.309 0.324
Mean
mean(xt.sims-xc.sims)

[1] 0.110806

ATE distribution

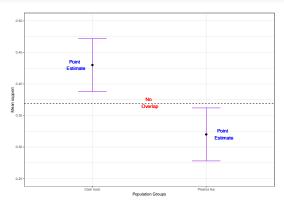
```
• How our A\hat{T}E \approx 0.11 looks like?
```

```
# Plot with tidyverse
hp < data.frame(mn = (xt.sims-xc.sims))
ggplot(hp, ass(mn)) +
geom_histogram(fill="#D6D7FF", color="black", alpha=0.9) +
geom_vline(xintercept = mean(hp$mn), color = "blue", linetype = "dashed", size = 1.5) +
xlab("Estimated ATEs") + ylab("") + ggtitle("ATE Sampling Distribution") +
theme_bw()
```


Simulating policy support

```
• A\hat{T}E \approx 0.11 \rightarrow makes a difference?
```

Use SEs to learn of variation of estimator


```
# Calculate SE
x.se <- sqrt((0.43*0.57)/1000 + (0.32*0.68)/1100)
x.se
## [1] 0.02104562
# 95% CIs for meaningful results
c(0.43 - qnorm(0.975) * x.se, 0.43 + qnorm(0.975) * x.se)</pre>
```

[1] 0.3887513 0.4712487
c(0.32 - qnorm(0.975) * x.se, 0.32 + qnorm(0.975) * x.se)

[1] 0.2787513 0.3612487

Plot and check effect

```
# plot with tidyverse
ggplot(se_plot, aes(x,y)) +
geom_errorbar(aes(ymin = y-2*se, ymax = y+2*se), width = 0.25, color = "purple") +
geom_point(size = 2) + ylim(0.25,0.5) +
geom_hlime(yintercept = 0.369, linetype = "dashed") +
geom_text(x=1.5,y=0.37,label = "No \n Overlap", color = "red", size = 4.5) +
geom_text(x=0.86;y=0.43,label = "Point \n Estimate", color = "blue", size = 4.5) +
geom_text(x=2.15,y=0.32,label = "Point \n Estimate", color = "blue", size = 4.5) +
ylab("Mean support") + xlab("Population Groups") +
theme_bw()
```


More simulations and data

- Create our own experimental data
- library(fabricatr): Random data generator
- Steps:
 - 1. Create treatments (assign sample size and probabilities).
 - 2. Create binary outcome variables.
 - 3. Create continuous outcome variables.
- Join all variables into one large data set.
- Focus on treatment 1 and cont. outcome variable:
 - Regime of aid recipient (democracy or not).
 - Extent of aid provided.

Create random data

Code for treatments and all variables

```
## Create data
# Set seed for randomizer
set.seed(12345)
# Create treatments (sample size of 1000)
exp.dat <- fabricate(
 N = 1000,
 trt1 = draw_binary(N = 1000, prob = 0.5),
 trt2 = draw binary(N = 1000, prob = 0.5))
# Create Binary & Continuous outcome variables
random vars <- fabricate(
 N = 1000.
 dv_cor1 = correlate(given = exp.dat$trt1, rho = 0.8,
                      draw_binary, N = 1000, prob = 0.65),
 dv_cor2 = correlate(given = exp.dat$trt2, rho = 0.65,
                      draw_binary, N = 1000, prob = 0.35),
 cont_cor1 = correlate(given = exp.dat$trt1, rho = 0.55,
                        rnorm, mean = 1500, sd = 30).
 cont cor2 = correlate(given = exp.dat$trt2, rho = 0.75,
                        rnorm, mean = 1450, sd = 45))
```

Create random data

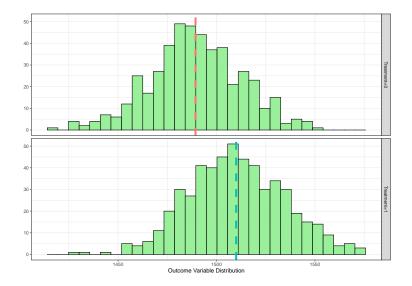
Join variables and final data output

```
# Tidyverse approach to join columns
exp.dat <- left_join(exp.dat, random_vars, by = "ID")</pre>
```

```
# Our random experimental data
head(exp.dat, n=8)
```

##		ID	trt1	trt2	dv_cor1	dv_cor2	$cont_cor1$	$cont_cor2$
## 1	1	0001	1	0	1	0	1523.100	1395.533
## 2	2	0002	1	1	1	1	1492.402	1466.578
## 3	3	0003	1	0	1	0	1500.165	1431.904
## 4	4	0004	1	0	1	0	1510.011	1406.666
## 5	5	0005	0	1	0	1	1515.649	1442.158
## 6	6	0006	0	0	0	0	1512.053	1430.640
## 7	7	0007	0	0	0	1	1474.265	1451.380
## 8	В	8000	1	1	1	0	1498.759	1443.719

Exploring the experimental data


- Random assignment of 'respondents'?
- Calculate mean outcome for treatment 1 and ATE.

```
# How many 'respondents' assigned per treatment?
n.zero <- sum(exp.dat$trt1 == 0)</pre>
n.zero
## [1] 469
n.one <- sum(exp.dat$trt1 == 1)
n.one
## [1] 531
# Mean outcome variable by treatment 1
est.zero <- mean(exp.dat$cont_cor1[exp.dat$trt1 == 0])</pre>
est.zero
## [1] 1489.333
est.one <- mean(exp.dat$cont_cor1[exp.dat$trt1 == 1])</pre>
est one
## [1] 1509.973
# calculate ATE (Y(1) - Y(0))
```

est.one - est.zero

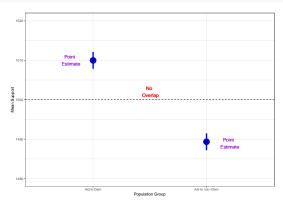
[1] 20.6396

How does it look?

Regime treatment matters?

- Calculate margin of error \rightarrow SEs
- Calculate CIs (define $\alpha = 0.05$)

```
# SEs for treatment 1 results
se.zero <- sd(exp.dat$cont_cor1[exp.dat$trt1 == 0]) / sqrt(n.zero)</pre>
se.zero
## [1] 1.068058
se.one <- sd(exp.dat$cont_cor1[exp.dat$trt1 == 1]) / sqrt(n.one)</pre>
se one
## [1] 1.06291
# Define alpha
alpha <- 0.05
# CTs
ci.zero <- c(est.zero - qnorm(1-alpha / 2) *
               se.zero, est.zero + qnorm(1-alpha / 2) * se.zero)
ci zero
## [1] 1487.240 1491.427
ci.one <- c(est.one - gnorm(1-alpha / 2) *
```


se.one, est.one + qnorm(1-alpha / 2) * se.one)

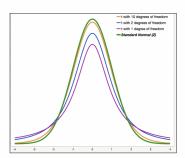
ci.one

[1] 1507.890 1512.056

How does our effect looks? matters?

```
# plot with tidyverse
ggplot(se_plot2, aes(x,y)) +
geom_pointrange(aes(ymin = y-2*se, ymax = y+2*se), color = "blue", size = 1.75) +
geom_point(size = 2) + ylim(1480,1520) +
geom_hlime(yintercept = 1500, linetype = "dashed") +
geom_text(x=1.5,y=1502,label = "No \n Overlap", color = "red", size = 4.5) +
geom_text(x=0.8,y=1510,label = "No \n Overlap", color = "purple", size = 4.5) +
geom_text(x=2.2,y=1489,label = "Point \n Estimate", color = "purple", size = 4.5) +
ylab("Mean Support") + xlab("Population Group") +
theme_bw()
```


Clarifying objectives


- What's with all the simulations?
- Real world: 1 sample, 1 mean...
- Research supported by simulations: public policy
 - Support for government policy: expand anecdotal findings.
 - Lobbying in the senate: women representatives example.
- Research supported by simulations: business world
 - Product design and development: expand A/B testing.

Estimation approaches

- Estimation thus far \rightarrow CLT
- ATE & Cls are based on CLT assumption
- Alternative: outcome variable ~ N (μ, σ²)
- Use student's t-distribution:
 - Also describes DOF (degrees of freedom).
 - normal z-score == student's t-statistic.
 - Distribution has 'heavier tails'.

student's t-distribution

- ▶ DOF = (n k), (n = observations; k=model parameters).
- Critical value: t-statistic

		mbers in ea rees of free					ution with obabilities	ja).			
15.0											
#Vp	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005			
1	0.324920	1.000000	3.077584	6.313752	12,70620	31,82052	63.65674	635.5192			
2	0.288875	0.816457	1.885818	2.513988	4.30265	6.96456	3.32484	31.5991			
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.5240			
4	0.270722	0.740697	1.533206	2.131847	2,77645	3.74995	4.90409	8.6103			
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.83214	6.8688			
6	0.264835	6,317558	1.439756	1.943180	2.44651	3.14267	3.70743	5.9588			
1	0.263167	0.711142	1.414924	1.884579	2.36462	2.99795	3.49948	5.4079			
	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35538	5.0413			
9	0.268955	0.302722	1.383829	1,833113	2.26215	2.82144	3.24984	4,7809			
10	0.268185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5889			
11	0.258556	0.897445	1.363430	1.795885	2.20099	2.71808	3.10581	4,4320			
12	0.259033	0.895483	1.356217	1.782288	2.17681	2.68100	3.05454	43178			
13	0.258591	0.883829	1.350171	1.779933	2.16037	2.65031	3.01228	4.2208			
14	0.258213	0.682417	1.345830	1,761310	2.14473	2.62449	2.97684	4.1405			
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728			
16	0.257599	0.690122	1.336757	1,745884	2.11991	2.58349	2.92078	4.0150			
17	0.257347	0.689195	1.333379	1.729607	2.10582	2.56693	2.89823	3.9651			
18	0.257123	0.688364	1.330391	1.734064	2.10092	2.55238	2.87844	3.9218			
19	0.256923	0.687621	1.327728	1.729133	2.09302	2.53948	2.89093	3.8834			
20	0.256743	0.686954	1.325341	1.724718	2,08596	2.52798	2.84534	3.8495			
21	0.258580	0.686352	1.323188	1.723743	2.07961	2.51765	2.83136	3.8193			
22	0.256432	0.885805	1.321237	1.717144	2.07387	2.50832	2.81875	3.7921			
23	0.256297	0.685306	1.319490	1.713872	2.06886	2.49987	2.80734	3.7675			
24	0.256173	0.684850	1.317836	1,710882	2.06390	2.49216	2,79694	3.7454			
25	0.258060	0.684430	1.316345	1,708141	2.05554	2.48511	2.78744	3.7251			
26	0.255955	0.684043	1.314872	1.705618	2.05553	2.47863	2.77801	3.7066			
27	0.255858	0.683685	1.313703	1.783288	2.05183	2.47266	2.77068	3.6895			
28	0.255768	0.683353	1.312527	1,701131	2.04841	2,46714	2.76325	3.6739			
29	0.255684	0.583044	1.311434	1.699127	2.04523	2.46202	2.75639	3.6554			
30	0.255605	0.682756	1.310415	1.687261	2.04227	2.45726	2.75000	3.6460			
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32835	2.57583	3.2905			
CI			80%	90%	95%	58%	99%	99.9%			

t-distribution in R

- Cls ar wider, more conservative
- Use qt() function

```
# CI: CLT vs. t-distribution
# Treatment = 0
ci.zero
```

ci.zeroT

```
## [1] 1487.234 1491.432
# Treatment = 1
ci.one
```

[1] 1507.885 1512.061

Wrapping up Week 10

Summary:

- ► The challenge of uncertainty: Separating signals and noise.
- Estimation using sample mean or diff-in-means.
- Simulations and estimators probability distributions.
- SD, SEs and margin of errors.
- Constructing CI how to interpret 95% CI?
- Estimators are uncertain, but meaningful?
- Estimating with the t-distribution.

Data report next week!