Bush 631-600: Quantitative Methods

Lecture 1 (08.30.2022): Introduction

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Fall 2022

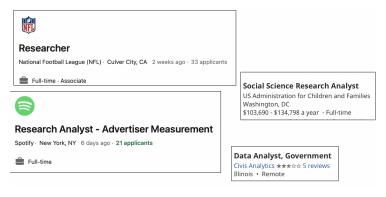
What is today's plan?

- ► Introductions.
- What is this class?
- Syllabus 'deep dive'.
- Programming with R.

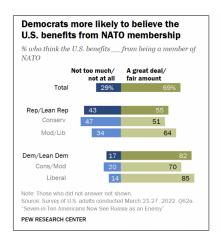
Introductions

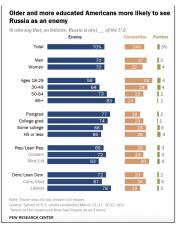
- ▶ Rotem Dvir: PhD in political science (Texas A&M, 2021).
- Major field: International Relations.
- Focus: International security and foreign policy.

- Assistant research scientist ISTPP, Bush School.
- Study public policy: health care, tech, critical infrastructure.
- More? Check my website (Link)


Bush 631: What are we doing here?

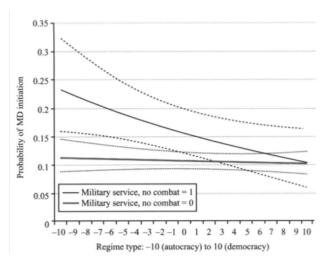
- Quantitative social science.
- Investigate social, economic and political world.




Quantitative Social Science

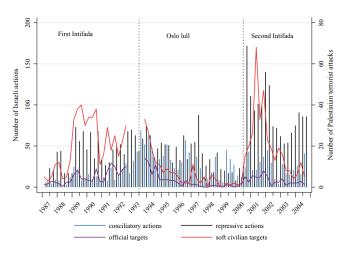
- Data science: Facebook, Twitter, Tiktok, Google
- ▶ Non-profits, government agencies: conduct policy evaluation with data.

Studying global issues with data

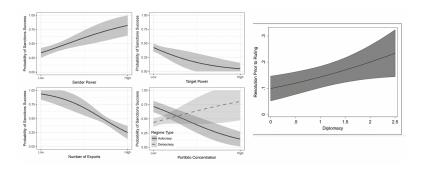

Data driven Policymaking

Human choices research and data Status-quo bias **Default options** Save for retirement: opt-out or opt-in?

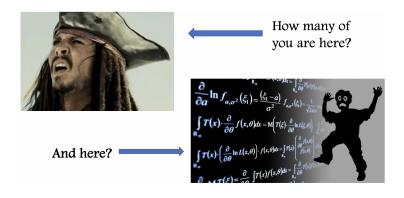
Richard H. Thaler Cass R. Sunstein Nudge Improving Decisions About Health, Wealth, and Happiness


International Affairs research

- What drives the likelihood of international conflicts?
- ▶ The leaders? or the regimes?


International Affairs research

► Counter terrorism strategies and organizational responses.


International Affairs research

Diplomacy; Political economy: global trade flows, sanctions, foreign aid.

Quant methods

STUDY PUBLIC POLICY WITH STATS AND MATH...

Quant methods

Why? Why would I do that?

Why should I take this class?

- Skills to explore important questions:
 - ▶ Do economic sanctions work? when? why not?
 - Who support and who rejects free trade? why?
 - Why does leader decapitation limited as a counter-terrorism strategy?
- Transferable skills across industries:
 - Programming.
 - Data analysis.
 - Design social science research.
 - Writing professional docx: reports, briefs, executive summary.
 - Visualizing plots, figures, infographics.
- ► You have to? :)

How are we doing it?

- Two interconnected paths:
 - 1. Theory and research design.
 - 2. Hands-on data analysis using R.

Important to remember

First - we design our research to answer the question(s)... Then, we use programming (with R) for analysis We end-up with (hopefully...) relevant insights

Remember - it's all in the syllabus...

The essentials:

▶ When: Tuesdays, 4:30-7:20pm

▶ Where: Allen 1003

Office hours:

- ► Tuesday & Thursday 9:30-11:00am.
- My office: Allen 3029.
- Email, Zoom meeting.

Why office hours? Have you watched? (Link)

Lectures:

- Be ready read before class.
- Required readings QSS book (all marked on syllabus).
- Recommended readings should I read? what are they?
- Taking notes in class.
- Programming practice: HW and class assignments.

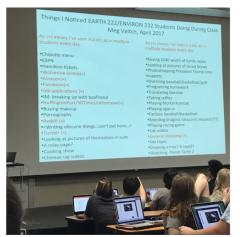
Course material and resources:

- ▶ Website: slides, R code, tasks instructions, other resources.
- Canvas: announcements, assignments, course material.
- Email if you need help.

Attendance:

- Joint effort to learn methods.
- ▶ 5% of final grade.
- ▶ 1 unexcused absence. Then what?
- Notify me before you miss class.

Remember COVID???

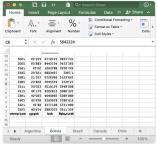

- Please don't come to class if you're sick/tested positive.
- ► Follow A&M guidelines (forms, quarantine).
- University accepted excused absence.

Grading and assignments:

- 1. Attendance (5%).
- 2. Home assignments (Swirl R) (10%).
- 3. Research design task with R (10%).
- 4. Research design in class 4 tasks (10%).
- 5. Course project proposal (10%).
- 6. Course project data report (15%).
- 7. Course project poster/infographic (25%)
- 8. Course project executive summary (10%).
- 9. Course project peer review and feedback (5%).

Other issues:

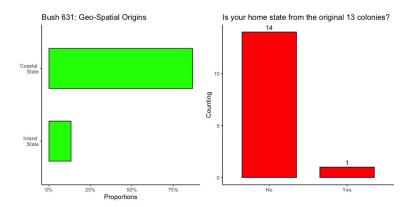
- Make-up policy; Plagiarism.
- Electronics in class.


Topics overview:

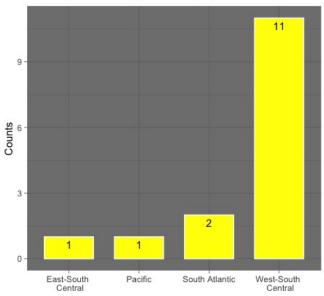
- 1. Introduction and R basics.
- 2. Causality (2 weeks).
- 3. Measurement (2 weeks).
- 4. Prediction (3 weeks).
- 5. Probability (2 weeks).
- 6. Estimation and uncertainty (3 weeks).
- 7. Summary.

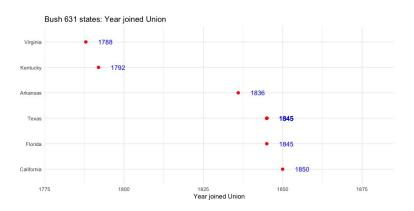
Introduction to R

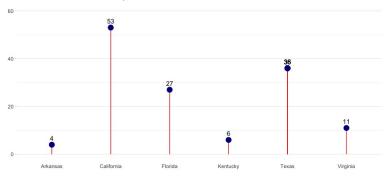
- ▶ Why R, isn't excel easier?
- ▶ Well...



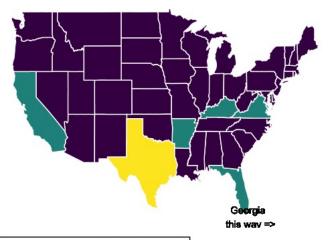
Introduction to R




Introduction to R



Your home state: Census 9 Divisions



States and number of house representatives

Bush 631: mapping home states

Class members in US states 0 1 1 10

Programming with R

Basic math tool

```
255+345
## [1] 600
255*345
## [1] 87975
255/345
## [1] 0.7391304
345/(2*255)
## [1] 0.6764706
sqrt(255)
## [1] 15.96872
```

Programming with R

```
Objects: storing information (number, string)
number <- 5
number
## [1] 5
no number <- "5"
no number
## [1] "5"
letter <- "W"
letter
## [1] "W"
word <- "Aggies"
word
## [1] "Aggies"
```

Programming with R

```
Objects: math results
result <- 2+5
result
## [1] 7
sqrt(result)
## [1] 2.645751
Potential Errors
no_number/5
Error in no_number/5 : non-numeric argument to binary operator
Result/5
Error: object 'Result' not found
```

Class: category/type of object

```
class(result)
## [1] "numeric"
class(letter)
## [1] "character"
class(word)
## [1] "character"
class(sqrt)
## [1] "function"
```

Vectors: array to store data

```
v1 \leftarrow c(1,2,3,4)
v1
## [1] 1 2 3 4
v2 <- c("A", "B", "C", "D")
v2
## [1] "A" "B" "C" "D"
v3 \leftarrow c(11,12,13)
v_{join1} \leftarrow c(v1, v2)
v_join1
## [1] "1" "2" "3" "4" "A" "B" "C" "D"
v_{join2} \leftarrow c(v1,v3)
v_join2
## [1] 1 2 3 4 11 12 13
```

Working with data

2) Direct coding

190 library(readxl)
191 ags <- read_excel("~/Dropbox/TAMU/Bush631_QuantMethods/ags.xlsx")
192 View(ags)
193

- (a) Use the read_function
- (b) View opens the data file for viewing

Our data

^	Year ‡	Wins ‡	Losses ‡	Pct ‡	Coaching	Bowl \$
1	2021			0.667	Jimbo Fisher (8–4)	Gator Bowl-Did not play
2	2020			0.900	Jimbo Fisher (9-1)	Orange Bowl-W
3	2019			0.615	Jimbo Fisher (8–5)	Texas Bowl-W
4	2018			0.692	Jimbo Fisher (9–4)	Gator Bowl-W
5	2017			0.538	Jeff Banks (0-1), Kevin Sumlin (7-5)	Belk Bowl-L
6	2016	8		0.615	Kevin Sumlin (8-5)	Texas Bowl-L
7	2015			0.615	Kevin Sumlin (8-5)	Music City Bowl-L
8	2014	8		0.615	Kevin Sumlin (8-5)	Liberty Bowl-W
9	2013			0.692	Kevin Sumlin (9-4)	Chick-fil-A Bowl-W
10	2012	11		0.846	Kevin Sumlin (11-2)	Cotton Bowl-W
11	2011			0.538	Mike Sherman (6-6), Tim DeRuyter (1-0)	Meineke Car Care Bowl of Texas-W
12	2010			0.692	Mike Sherman (9-4)	Cotton Bowl-L
13	2009			0.462	Mike Sherman (6-7)	Independence Bowl-L
14	2008			0.333	Mike Sherman (4-8)	NA
15	2007			0.538	Dennis Franchione (7-6)	Alamo Bowl-L
16	2006			0.692	Dennis Franchione (9-4)	Holiday Bowl-L
17	2005			0.455	Dennis Franchione (5-6)	
18	2004			0.583	Dennis Franchione (7-5)	Cotton Bowl-L
19	2003			0.333	Dennis Franchione (4-8)	
20	2002	6	6	0.500	R.C. Slocum (6-6)	NA

Working with data: Indexing

```
ags[1,]
## # A tibble: 1 x 6
## Year Wins Losses Pct Coaching
                                         Bowl
## <dbl> <dbl> <dbl> <dbl> <chr>
                                           <chr>
## 1 2021 8 4 0.667 Jimbo Fisher (8-4) Gator Bowl-Did not play
ags[,1]
## # A tibble: 119 x 1
     Year
     <dbl>
  1 2021
## 2 2020
## 3 2019
## 4 2018
## 5 2017
## 6 2016
## 7 2015
## 8 2014
## 9 2013
## 10 2012
## # ... with 109 more rows
## # i Use `print(n = ...)` to see more rows
```

Working with data: Indexing

```
ags[c(1,2,4),]
## # A tibble: 3 x 6
## Year Wins Losses Pct Coaching
                                                       Bowl
## <dbl> <dbl> <dbl> <dbl> <chr>
                                                       <chr>>
## 1 2021 8 4 0.667 Jimbo Fisher (8-4) Gator Bowl-Did not play
## 2 2020 9 1 0.9 Jimbo Fisher (9-1) Orange Bowl-W
## 3 2018 9 4 0.692 Jimbo Fisher (9-4) Gator Bowl-W
ags[1:3]
## # A tibble: 119 x 3
      Year Wins Losses
      <dbl> <dbl> <dbl>
   1 2021 8
## 2 2020 9 1
## 3 2019 8 5
## 4 2018 9 4
## 5 2017 7 6
## 6 2016
## 7 2015 8 5
## 8 2014
## 9 2013
## 10 2012
## # ... with 109 more rows
## # i Use `print(n = ...)` to see more rows
```

Working with data: Indexing

```
ags[c("Coaching")]
## # A tibble: 119 x 1
   Coaching
##
     <chr>>
  1 Jimbo Fisher (8-4)
## 2 Jimbo Fisher (9-1)
## 3 Jimbo Fisher (8-5)
## 4 Jimbo Fisher (9-4)
## 5 Jeff Banks (0-1), Kevin Sumlin (7-5)
## 6 Kevin Sumlin (8-5)
## 7 Kevin Sumlin (8-5)
## 8 Kevin Sumlin (8-5)
## 9 Kevin Sumlin (9-4)
## 10 Kevin Sumlin (11-2)
## # ... with 109 more rows
## # i Use `print(n = ...)` to see more rows
ags[1:10, c("Year", "Bowl")]
## # A tibble: 10 x 2
      Year Bowl
   <dbl> <chr>
## 1 2021 Gator Bowl-Did not play
## 2 2020 Orange Bowl-W
## 3 2019 Texas Rowl-W
## 4 2018 Gator Bowl-W
## 5 2017 Belk Bowl-L
## 6 2016 Texas Bowl-L
## 7 2015 Music City Bowl-L
## 8 2014 Liberty Bowl-W
## 9 2013 Chick-fil-A Bowl-W
## 10 2012 Cotton Bowl-W
```

Working with data: using the \$ sign

```
ags$Year[5]
## [1] 2017
ags$Coaching[1:5]
## [1] "Jimbo Fisher (8-4)"
## [2] "Jimbo Fisher (9-1)"
## [3] "Jimbo Fisher (8-5)"
## [4] "Jimbo Fisher (9-4)"
## [5] "Jeff Banks (0-1), Kevin Sumlin (7-5)"
```

Math operations and data vectors

```
ags_win_p <- ags$Pct * 100
ags_win_p
    [1]
               90.0
                     61.5
                           69.2
                                 53.8
                                       61.5
                                             61.5
                                                   61.5
    [13]
         46.2
               33.3
                     53.8
                           69.2
                                 45.5
                                       58.3
                                             33.3
                                                   50.0
                                                         66.7
    Γ25<sub>1</sub>
         69.2
               50.0
                     75.0
                           95.5
                                 83.3
                                       92.3
                                             83.3
                                                   73.1
                                                         66.7
##
   [37]
         83.3
               54.5
                     50.0
                           45.5
                                 58.3
                                       36.4
                                             54.5
                                                   66.7
                                                         66.7
                                                               83.3
                                                                     83.3
                                                                           72.7
   [49]
         45.5
               27.3
                     45.5 18.2
                                 30.0
                                       30.0
                                             63.6
                                                   45.0
                                                         30.0
                                                               10.0
                                                                     25.0
                                                                           30.0
   [61]
         45.0
               25.0
                     30.0 40.0
                                 72.7
                                       95.0
                                             75.0
                                                   10.0
                                                         45.0
                                                               35.0 60.0
   [73]
         15.0
                5.0
                     35.0 40.0
                                 60.0 63.6
                                            75.0
                                                   45.0 81.8
                                                               90.0 100.0
##
   [85]
         66.7
               70.8
                     30.0
                           27.3
                                 65.0 50.0 70.0
                                                   22.2 55.6
                                                               55.0 94.4
                                                                          61.1
   [97]
         83.3
               75.0
                     61.1
                           55.6 77.8 81.3 100.0
                                                   85.7 100.0
                                                               66.7 75.0
## [109]
         44.4
               88.9
                     85.7 88.9
                                 93.8 37.5 81.3
                                                   85.7 77.8
```

Functions

Multiple functions for data summary:

- length (of vector)
- min & max values (for the whole vector)
- mean
- range
- sum

Functions: code examples

```
length(ags)
## [1] 6
min(ags$Losses)
## [1] O
max(ags$Wins)
## [1] 12
mean(ags$Wins)
## [1] 6.252101
mean(ags$Pct)
## [1] 0.6058151
range(ags$Wins)
## [1] 0 12
range(ags$Coaching)
## [1] "Bear Bryant (1-9)" "Walter Bachman (7-2)"
sum(ags$Wins) / length(ags$Wins)
## [1] 6.252101
```

Functions: code examples

```
sec \leftarrow seq(from = 2012, to = 2021, by = 1)
sec_coach <- ags$Coaching[10:1]
names(sec_coach) <- sec
sec_coach
##
                                       2012
                                                                                2013
##
                     "Kevin Sumlin (11-2)"
                                                              "Kevin Sumlin (9-4)"
##
                                       2014
                                                                                2015
                      "Kevin Sumlin (8-5)"
                                                              "Kevin Sumlin (8-5)"
##
                                       2016
                                                                                2017
##
                      "Kevin Sumlin (8-5)" "Jeff Banks (0-1), Kevin Sumlin (7-5)"
##
##
                                       2018
                                                                                2019
##
                      "Jimbo Fisher (9-4)"
                                                               "Jimbo Fisher (8-5)"
##
                                       2020
                                                                                2021
##
                      "Jimbo Fisher (9-1)"
                                                              "Jimbo Fisher (8-4)"
```

Functions: do-it-yourself

```
# my function: input = number of wins; output ??
jimbo.summary <- function(x){
  total_w <- sum(x)
  avg_w <- mean(x)
  most_w <- max(x)
  out <- c(total_w,avg_w,most_w)
  names(out) <- c("total wins","avergae # wins","most wins")
  return(out)
}</pre>
```

My jimbo function: the output

```
# a vector with Jimbo's number of wins in Aggieland
jimbo <- c(8,9,8,9)

# Run the function
jimbo.summary(jimbo)</pre>
```

```
## total wins avergae # wins most wins
## 34.0 8.5 9.0
```

Our Aggie data

```
names(ags)
## [1] "Year" "Wins" "Losses" "Pct" "Coaching" "Bowl"
nrow(ags)
## [1] 119
ncol(ags)
## [1] 6
dim(ags)
## [1] 119 6
```

Our Aggie data

summary(ags)

```
##
        Year
                      Wins
                                     Losses
                                                     Pct
##
   Min.
          :1903
                 Min.
                      : 0.000
                                        :0.000
                                                 Min.
                                                       :0.0500
                                 Min.
##
   1st Qu.:1932
                 1st Qu.: 4.000
                                 1st Qu.:2.000
                                                 1st Qu.:0.4550
##
   Median:1962
                 Median: 6.000 Median: 4.000
                                                 Median: 0.6360
   Mean :1962
                 Mean : 6.252 Mean :4.017 Mean :0.6058
##
##
   3rd Qu.:1992
                 3rd Qu.: 8.000
                                 3rd Qu.:6.000
                                                 3rd Qu.:0.7640
##
   Max.
          :2021
                 Max.
                        :12.000
                                 Max.
                                        :9.000
                                                 Max.
                                                       :1.0000
##
     Coaching
                         Bowl
##
   Length:119
                     Length:119
   Class : character
                     Class : character
##
##
   Mode :character Mode :character
##
##
##
```

Working with datafiles: Indexing

```
ags[1:5, "Wins"]
## # A tibble: 5 x 1
     Wins
    <db1>
## 3
## 4
## 5
ags[c(1:5),]
## # A tibble: 5 x 6
## Year Wins Losses Pct Coaching
                                                            Bowl
    <dbl> <dbl> <dbl> <dbl> <chr>
                                                            <chr>>
## 1 2021
                   4 0.667 Jimbo Fisher (8-4)
                                                            Gator Bowl-Did ~
## 2 2020 9 1 0.9 Jimbo Fisher (9-1)
                                                         Orange Bowl-W
## 3 2019 8 5 0.615 Jimbo Fisher (8-5)
                                                          Texas Bowl-W
## 4 2018
          9 4 0.692 Jimbo Fisher (9-4)
                                                            Gator Bowl-W
## 5 2017 7
                   6 0.538 Jeff Banks (0-1), Kevin Sumlin (7-5) Belk Bowl-L
```

Working with data: the \$ sign and Indexing

```
ags$Coaching[seq(from = 1, to = nrow(ags), by = 3)]
## [1] "Jimbo Fisher (8-4)"
                                  "Jimbo Fisher (9-4)"
   [3] "Kevin Sumlin (8-5)"
                                  "Kevin Sumlin (11-2)"
## [5] "Mike Sherman (6-7)"
                                  "Dennis Franchione (9-4)"
## [7] "Dennis Franchione (4-8)" "R.C. Slocum (7-5)"
## [9] "R.C. Slocum (9-4)"
                                  "R.C. Slocum (10-0-1)"
## [11] "R.C. Slocum (10-2)"
                                  "Jackie Sherrill (7-5)"
## [13] "Jackie Sherrill (10-2)" "Jackie Sherrill (5-6)"
## [15] "Tom Wilson (6-5)"
                                  "Emory Bellard (10-2)"
## [17] "Emory Bellard (5-6)"
                                  "Gene Stallings (2-9)"
## [19] "Gene Stallings (7-4)"
                                  "Hank Foldberg (1-9)"
## [21] "Jim Myers (4-5-1)"
                                  "Jim Myers (4-6)"
## [23] "Bear Bryant (7-2-1)"
                                  "Ray George (3-6-1)"
## [25] "Harry Stiteler (1-8-1)"
                                  "Homer Norton (4-6)"
## [27] "Homer Norton (7-2-1)"
                                  "Homer Norton (9-1)"
## [29] "Homer Norton (5-2-2)"
                                  "Homer Norton (2-7-2)"
## [31] "Madison Bell (7-3)"
                                  "Dana Bible (5-4-1)"
## [33] "Dana Bible (7-1-1)"
                                  "Dana Bible (5-4)"
## [35] "Dana Bible (10-0)"
                                  "E.H. Harlan (6-3)"
## [37] "Charley Moran (3-4-2)"
                                  "Charley Moran (8-1)"
## [39] "L.L. Larson (6-1-1)"
                                  "J.E. Platt (4-2)"
```

Working with data: missing values

^	Year ‡	Wins ‡	Losses ‡	Pct ‡	Coaching \$	Bowl ‡
25	1996			0.500	R.C. Slocum (6-6)	
26	1995			0.750	R.C. Slocum (9-3)	Alamo Bowl-W
27	1994	10		0.955	R.C. Slocum (10-0-1)	
28	1993	10		0.833	R.C. Slocum (10-2)	Cotton Bowl-L
29	1992	12		0.923	R.C. Slocum (12-1)	Cotton Bowl-L
30	1991	10		0.833	R.C. Slocum (10-2)	Cotton Bowl-L
31	1990			0.731	R.C. Slocum (9-3-1)	Holiday Bowl-W
32	1989	8		0.667	R.C. Slocum (8-4)	Sun Bowl-L
33	1988			0.583	Jackie Sherrill (7-5)	
34	1987	10		0.833	Jackie Sherrill (10-2)	Cotton Bowl-W
35	1986			0.750	Jackie Sherrill (9–3)	Cotton Bowl-L
36	1985	10		0.833	Jackie Sherrill (10-2)	Cotton Bowl-W
37	1984			0.545	Jackie Sherrill (6-5)	
38	1983			0.500	Jackie Sherrill (5-5-1)	NA

How to deal with NAs?

```
# create vector of values 1-10, add NA to it
mis_vec \leftarrow c(1:10,NA)
mis_vec
   [1] 1 2 3 4 5 6 7 8 9 10 NA
##
# calculate mean of vector
mean(mis_vec)
## [1] NA
# better...
mean(mis_vec, na.rm = TRUE)
## [1] 5.5
```

Saving

Coding:

- ▶ We use script files reproducing code.
- Save with the menu / disk sign on RStudio.
- File extension (name.R) is saved in your preferred directory.

Data files:

- ▶ If we changed the data, we can save the edited file.
- Use menu (save as. . .).
- Code: write.csv(file_name, "selected_name.csv")
- Data is saved in your preferred directory.

Packages

- Essential component of programming in R.
- User-generated 'stacks' of code/data.
- Free to download.
- Must be uploaded prior to use:
 - use the library(package_name) command.

Wrapping up week 1

Summary:

- ▶ What is Bush631?
- Why do I need to learn stats and research methods?
- Syllabus 'deep dive'.
- ▶ Intro to R: objects, vectors, functions, using data.

Homework assignments

Swirl tasks:

- ▶ Short practice of using R.
- Completed in RStudio console.
- ▶ Not sure how to answer? check the book.
- Submit lessons 1-3 before next class:
- 1. Basic Building Blocks.
- 2. Workspace and Files
- 3. Sequences of Numbers

Swirl task submit - how?

For each lesson ↓

```
Consider Terminal Render & Eactground Date & Consider Annual C
```