Bush 631-607: Quantitative Methods
 Lecture 5 (09.28.2021): Measurement vol. II

Rotem Dvir

The Bush school of Government and Public Policy
Texas A\&M University

Fall 2021

What is today's plan?

- More on measurement.
- Latent concepts.
- Correlation.
- Visuals: scatterplots.
- Clustering.
- R work: scatterplot, subset(), grouping, kmeans()

Measurement

Why?

- Social science: develop and test causal theories.
- Leader background and conflict behavior.
- Minimum wage and levels of full-time employment?
- Concepts: level of unemployment, leader background, public approval.

How?
Measures - the context of theoretical concepts

Measureing ideology

Measurement models:

- Summarize data.
- Learn about human behavior.

Measuring ideology

Legislators measurement model: congress roll-call votes

Infer from behavior: voting \rightarrow orientation.

Ideology in US Congress

Spatial voting: voting and political ideology

Complex measurement

Latent concepts:

- Hard to measure.
- Variation in definitions.
- Democracy: the polity debate.
- Ideology: representative votes?

Other suspects:

- Terrorism: which violent events are terrorism?
- Resolve: how resolve is the president?

What is terrorism?

Researchers \rightarrow objective measures:

- Identity: perpetrators and victims.
- Population-wide psychological effects.
- Clear political objective.

The Public?

You tell me

Public views of terrorism?

Huff and Kertzer (2018):

- Objective: 'facts on the ground'.
- Subjective: 'who and why?'

The Method: Conjoint experiment

- No control group.
- Multiple treatments.
- Outcome: is it terrorism? (yes/no)
- How each factor contributes to viewing an incident as terrorism?

Conjoint experiment: Terrorism

Scenario 1

The incident: shooting
The incident occurred in a church in a foreign democracy with a history of human rights violation
Two individuals died.
The shooting was carried by a Muslim individual with history of mental illness.
News suggest the individual had ongoing personal dispute with one of the targets

Scenario 2

The incident: bombing
The incident occurred in a police station in a foreign dictatorship.
No fatalities reported.
The bombing was carried by a Muslim organization.
News suggest the group was motivated by the goal of overthrowing the government.

Objective path: results

Subjective path: results

Figure 5 Social Categorization Effects

Figure 6 Motive Attribution Effects

Terrorism data

Type: event data
A lot of resources:

- GTD - START (Maryland).
- Individuals radicalization (PRIUS) - START (Maryland).
- Episodes of political violence (1946-2017) (Vienna, Austria).
- Suicide terrorism - CPOST (Chicago)
- List (Link)

Terrorism data

Global Terrorism Database (GTD):

- Time frame: 1970-2019.
- Events: International \& domestic terrorism.
- Scope: over 100,000 cases.
- Sources: open source media.

Problem(s)?

- Events data \rightarrow news sources.
- Temporal: less work prior to 1970.
- Biased and Selective reporting: strategic, sensational events.
- Errors in measurement.
- Measures matter - democracy and frequency of incidents (polity, strategic reporting).

Latent concept: Resolve

	Country A	Country B
Government Interests in the dispute	The country is a democracy Experts describe the country's stakes in the dispute as high.	The country is a democracy Experts describe the country's stakes in the lispute as high.
Leader background		
the military briefly.		

What is resolve?

Two paths:

Behaviors

Reputation

Current
Costly signals

Results

Characteristics
$\left[\begin{array}{r}\text { Capabilities } \\ \text { \& interests }\end{array}\right.$

Results

Complex concepts \& measurement

What's the bottom-line?

- Latent concepts: democracy, ideology, terrorism, resolve.
- Tricky measurement.
- More ways to measure: resolve \rightarrow rival reciprocate in crisis.

How to improve measures?

- Theoretical grounding.
- Replications.

Bivariate Relationships

Summarize relationship b-w 2 variables
Liberal-conservative ideology: Economy \& Race

```
head(congress)
```

| \#\# | congress | district | state | party | | name | | dwnom1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | dwnom2

Back to visuals

Scatter Plot

- Visualize relationship between 2 variables.
- Numeric/continuous values.

The 80th Congress

Congress ideology in the 21st century

The 112th Congress

Congress ideology: time trend

```
dem.med <- tapply(dem$dwnom1, dem$congress, median)
rep.med <- tapply(rep$dwnom1, rep$congress, median)
plot(names(dem.med), dem.med, col = "blue", type = "l",
    xlim = c(80,115), ylim = c(-1,1), xlab = "Congress",
    ylab = "DW-NOMINATE Score")
lines(names(rep.med), rep.med, col = "red")
text(110, -0.6, "Democrats")
text(110,0.8, "Republicans")
```


‘International’ Ideology

UN \rightarrow International institution.
Voting patterns \rightarrow countries orientation/ideology.

UN voting data (1946-2012)

```
dim(mydata)
```

```
## [1] 9120 6
```


[1] 9120 6

summary(mydata)

```
summary(mydata)
```

\#\#	Year	CountryAbb	CountryName	idealpoint
\#\#	Min. $: 1946$	Length:9120	Length:9120	Min. $:-2.6552$
\#\#	1st Qu.: 1972	Class :character	Class :character	1st Qu.: -0.6406
\#\#	Median :1987	Mode :character	Mode :character	Median :-0.1644
\#\#	Mean $: 1985$			Mean $: 0.0000$
\#\#	3rd Qu.: 2001			3rd Qu.: 0.7968
\#\#	Max. $: 2012$			Max. $: 3.0144$

\#\#

\#\#	PctAgreeUS	PctAgreeRUSSIA
\#\#	Min. $: 0.0000$	Min. $: 0.0000$
\#\#	1st Qu. $: 0.1395$	1st Qu. $: 0.5053$
\#\#	Median $: 0.2400$	Median $: 0.6567$
\#\#	Mean $: 0.2960$	Mean $: 0.6219$
\#\#	3rd Qu.:0.3902	3rd Qu.:0.7424
\#\#	Max. $: 1.0000$	Max. $: 1.0000$
\#\#	NA's $: 1$	NA's $: 5$

Global ideologies

Voting with US \rightarrow measure of foreign policy similarity.
Similar FP \rightarrow similar global orientation.

```
# Tidyverse approach to data management
# Arrange by year, calculate mean for US / Russia voting
annual.agree <- mydata %>%
    group_by(Year) %>%
    summarize(us.agree = mean(PctAgreeUS, na.rm = T),
        ru.agree = mean(PctAgreeRUSSIA, na.rm = T))
```

head(annual.agree)

\#\# \#	A tibble: 6 x 3		
\#\#	Year us.agree	ru.agree	
\#\#	<int>	<dbl>	<dbl>
\#\# 1	1946	0.585	0.362
\#\# 2	1947	0.621	0.383
\#\# 3	1948	0.578	0.279
\#\# 4	1949	0.541	0.377
\#\#	1950	0.635	0.312
\#\#	1951	0.487	0.402

Trends in global ideology

```
ggplot(data = annual.agree) +
    geom_line(mapping = aes(x = Year, y = us.agree), color = "blue") +
    geom_line(mapping = aes(x = Year, y = ru.agree), color = "red") +
    geom_text(aes(x = 2000, y = 0, label = "Voting with US"), color = "blue", data = data.frame()) +
    geom_text(aes(x = 2000, y = 1, label = "Voting with Russia"), color = "red", data = data.frame()) +
    geom_vline(aes(xintercept = 1989), linetype = "dotdash", color = "black") +
    geom_text(aes(x = 1993, y = 0.5, label = "Cold War Ends"), color = "black") +
    ylab("Proportion voting with Superpower") + theme_classic()
```


Grouping observations

Which side are you on?

Grouping countries: FP Similarity measures

```
# Table for voting close to US
# USA
mydata %>%
    group_by(CountryName) %>%
    summarise(mean.pctUS = mean(PctAgreeUS)) %>%
    arrange(desc(mean.pctUS)) %>%
    head(n = 11) %>%
    filter(CountryName != "United States of America")
## # A tibble: 10 x 2
## CountryName mean.pctUS
## <chr>
    <dbl>
## 1 Palau 0.736
## 2 United Kingdom 0.652
## 3 Taiwan 0.643
## 4 Israel 0.640
## 5 Federated States of Micronesia 0.594
## 6 Canada 0.586
## 7 Luxembourg 0.571
## 8 Netherlands 0.562
## 9 Belgium 0.562
## 10 France 0.549
```


Political polarization: QSS textbook

Income inequality \rightarrow political polarization.
The Gini coefficient

US test case

Gini coefficient - Political Polarization

Association b-w variables

Income inequality \rightarrow Political polarization?
Correlation:

- Summary of bivariate relationship.
- How two factors 'move together' on average.
- Always relative to mean value.

Product of z-scores:

$$
\operatorname{cor}(x, y)=\frac{1}{n} \sum_{i=1}^{n}\left(Z-x_{i} * Z-y_{i}\right)
$$

Z-scores

A measure for the deviation from the mean (in SD terms)
Standardize variable
Allows comparison with common units

$$
\operatorname{Zscore}\left(X_{i}\right)=\frac{x_{i}-\bar{x}}{S D\left(X_{i}\right)}
$$

Z score $>0 \rightarrow$ unit larger than mean
Z score $<0 \rightarrow$ unit smaller than mean

z-score example

z-score example: QB salary

z-score example: QB salary

```
mean(qb_data$Avg_salary)
## [1] 33200378
sd(qb_data$Avg_salary)
## [1] 6265045
# Cousins z-score
((33000000 - mean(qb_data$Avg_salary))/sd(qb_data$Avg_salary))
## [1] -0.03198346
# Mahomes z-score
((45000000 - mean(qb_data$Avg_salary))/sd(qb_data$Avg_salary))
## [1] 1.883406
```

Outliers \rightarrow more than 3 SD from mean

Correlation

- Average product of z-scores:
- Positive correlation: when x is bigger than its mean, so is y
- Negative correlation: when x is bigger than its mean, y is smaller
- z-score: not sensitive to unit used
- Correlation is identical even for different measuring units of variable

Correlation - how do the data look?

Positive correlation

Correlation - how do the data look?

Negative correlation

Correlation

- Measures linear association
- Order does not matter: $\operatorname{cor}(x, y)=\operatorname{cor}(y, x)$
- Interpretation:
- Values range between (-1) to 1 .
- Close to 'edges' \rightarrow stronger association.
- Value of zero \rightarrow no association.
- Positive correlation \rightarrow positive association.
- Negative correlation \rightarrow negative association.

Correlation in R

UN Voting: association b-w ideal point \& liberal FP approach
\# Voting with US
cor(mydata\$idealpoint, mydata\$PctAgreeUS, use = "pairwise")
\#\# [1] 0.7498446
\# Voting with Russia
cor(mydata\$idealpoint, mydata\$PctAgreeRUSSIA, use = "pairwise")
\#\# [1] -0.7050107

Visualizing distributions

Qunatile Qunatile Plot

Scatter-plot of quantiles
\#\#\# Q-Q plot
qqplot(mydata\$PctAgreeUS, mydata\$PctAgreeRUSSIA, xlab = "UN voting with US",
ylab = "UN voting with Russia",
main = "UN voting with superpower: trend over time")
abline $(0,1)$

UN voting with superpower: trend over time

Matrix in R

- Rectangular array with multiple values.
- Stores numeric variable (unlike data frame).
- Extract values with indexing [row, col].

```
### Build a matrix
m <- matrix(1:16, nrow = 4, ncol = 4, byrow = TRUE)
rownames(m) <- c("A","B","C", "D")
colnames(m) <- c("W","X","Y","Z")
m
\begin{tabular}{lrrrr} 
\#\# & W & X & Y & Z \\
\#\# A & 1 & 2 & 3 & 4 \\
\#\# & B & 5 & 6 & 7 \\
\#\# & C & 9 & 10 & 11 \\
\#\# & D & 13 & 14 & 15 \\
\hline
\end{tabular}
```


Working with matrices

Use math and apply functions

```
rowSums(m)
```

\#\# A B C D
\#\# 10264258
colMeans (m)

```
## W X X Y Z
## 7 % 8 9 10
apply(m,1,mean)
```

\#\# A B C D
\#\# $2.5 \quad 6.5 \quad 10.5 \quad 14.5$
apply (m,2,sd)
\#\# W X \quad W
\#\# 5.163978 5.163978 5.163978 5.163978

Lists in R

- General class of objects.
- Useful for storing multiple object types.

```
x <- list(y1 = c("this","is","a list", "of", "aggie", "games"),
    y2 = 1:5,
    y3 = data.frame(z1 = 1:4, z2 = c("Kent St.","Colorado","New Mexico"
    ,"Arkansas"),
    z3 = c("Win","Win","Win","Loss")))
```

$x \$ y 3$

\#\#	z1	z2	z3
\#\#	1	1	Kent St.
\#\#	Win		
\#\#	2	Colorado	Win
\#\#	4	4	New Mexico

```
## [1] "this" "is"
"a list" "of"
"aggie" "games"
```


Clustering

- Identify associations within our data.
- Searching for clusters within large datasets.
- UN Voting data: diversity of global ideologies.
- Are there 'clusters' of ideologies?

Clustering

k-Means algorithm:

- Iterative: performed repeatedly to find differences b-w groups.
- Goal: split data to multiple similar groups (k-clusters).
- Each cluster is associated with a centroid (within group mean).

How?

- Observation assigned to closest cluster.
- Compute centroid based on new cluster.
- Researcher select initial number of clusters (k).
- Standardize data before procedure.

Cluster UN voting: 1989

```
# 1989 plot
un89 <- subset(mydata, subset = (Year == 1989))
cluster89 <- kmeans(un89[, c("idealpoint", "PctAgreeUS")], centers = 2)
un89$cluster1 <- cluster89$cluster
plot(x = un89$idealpoint, y = un89$PctAgreeUS, main = "1989",
    xlab = "Ideal point", ylab = "Percentage of Votes Agreeing with US",
    xlim = c(-3, 3), ylim = c(0, 1), pch = 16, col = un89$cluster1 + 1)
points(cluster89$centers, pch = 8, cex = 2) # add centroids
```


Cluster UN voting: 2012

\#\# plot for 2012
un12 <- subset(mydata, subset = (Year == 2012))
cluster12 <- kmeans(un12[, c("idealpoint", "PctAgreeUS")], centers = 2) un12\$cluster2 <- cluster12\$cluster
plot($x=$ un12\$idealpoint, $y=u n 12 \$ P c t A g r e e U S$, main $=" 2012 "$,
xlab $=$ "Ideal point", ylab $=$ "Percentage of Votes Agreeing with US",
$x \lim =c(-3,3), y \lim =c(0,1), p c h=16, c o l=u n 12 \$ c l u s t e r 2+1)$
points(cluster12\$centers, pch = 8, cex = 2)

UN data: shifting ideologies

Liberal \rightarrow non-Liberal

```
## going from liberal cluster to non-liberal
un8912$CountryName[un8912$cluster1 > un8912$cluster2]
[1] "Bahamas"
    "Cuba"
[4] "Dominican Republic" "Jamaica"
10] "St. Vincent and the Grenadines"
    "Antigua & Barbuda"
[13] "Mexico"
    "Belize"
    "El Salvador"
16] "Honduras"
19] "Costa Rica"
    "Colombia"
[22] "Guyana"
    "Suriname"
    "Brazil"
    "Argentina"
[31] NA NA
[34] "Belarus" "Cape Verde"
[37] "Guinea-Bissau"
    "Equatorial Guinea"
[40] "Mali"
    "Senegal"
    "Niger"
"Mauritania"
    "Burkina Faso"
    "Ghana"
```

"Haiti"
"Trinidad and Tobago"
"St. Lucia"
"St. Kitts and Nevis"
"Guatemala"
"Nicaragua"
"Venezuela"
"Ecuador"
"Bolivia"
"Uruguay"
"Russia"
"Sao Tome and Principe"
"Gambia"
"Benin"
"Ivory Coast"
"Liberia"
"Togo"

UN data: shifting ideologies

non-Liberal \rightarrow Liberal

Wrapping up week 5

Summary:

- Measuring complex (latent) concepts: terrorism, resolve.
- Visualize bivariate relations: scatter plot.
- z-scores and standardizing units.
- Correlation: how two factors 'move together'.
- Clustering: explore similarities in large dataset.
- R work: scatterplots, cor(), qqplot(), matrix(), list(), kmean()

Task 2: Working with R:

- Canvas (Wed/Thu.), more details next week.

