Bush 631-607: Quantitative Methods

Lecture 14 (11.30.2021): Review & Summary

Rotem Dvir

The Bush school of Government and Public Policy

Texas A&M University

Fall 2021

What is today's plan?

- Review course topics.
- Research designs.
- Predictions, probability and estimations.
- Social science and real-world politics.
- Data science in the real-world.

Course review: Causality

- ► Establish Cause → effect.
- Using (hypothetical) Counterfactual.

Establish causality

EXPERIMENTAL RESEARCH DESIGN

- ► Treatment and control groups.
- Same outcome measures.
- ▶ Gold standard → randomization.
- Calculate ATE over group of respondents.

$$SATE = \frac{1}{n} * \sum_{i=1}^{n} * Y_i(1) - Y_i(0)$$

Experiments: Example

President's type and support for FP (2019)

```
# Diff-in-means = ATE of type
mean(hawks$approve_b[hawks$hawk_t == 1], na.rm = T) -
    mean(hawks$approve_b[hawks$hawk_t == 2], na.rm = T)

## [1] -0.1202408
# Also with tapply()
tapply(hawks$approve_b, hawks$hawk_t, mean, na.rm = TRUE)

## 1 2
## 0.5774336 0.6976744
# Can also use subsets and diff-in-means
```

Establish causality

Observational research design

- Using data to assess causality.
- Good for generalizing results.
- Not as good for randomization.
- Problem of pre-treatment variables (confounders).

Causality in observational data

- ► Survey: political polarization and views of China (2020)
- ▶ Party $Thermometer \rightarrow Dems/Reps > 50$ support for party.

```
levels(as.factor(threat$china_frenemy))
## [1] "" "Ally" "Enemy" "Friendly" "Unfriendly"
```

Causality in observational data

China as the enemy?

```
# Diff-in-means (Support Dems thermometer)
mean(threat$china[threat$affective_Dem < 50], na.rm = T) -
    mean(threat$china[threat$affective_Dem > 50], na.rm = T)

## [1] 0.2243064
# Using tapply() by political interest
app <- tapply(threat$china, threat$pol_interest, mean, na.rm = TRUE)
sort(app)</pre>
```

Assessing research designs

Strengths and Weaknesses

- Internal validity:
 - ▶ How does the design helps answering the research Q?
 - Experiments → strong (randomization).
 - ▶ Observational → weak (confounders).
- External validity:
 - Can we generalize the results from sample?
 - Experiments → weak (hypothetical).
 - ▶ Observational → strong (real-world, cross-national).

Course review: Measurement

- Apply quant methods for social science.
- $lackbox{Measures} \rightarrow {\sf the\ context\ of\ concepts}.$
- Challenge: latent factors
 - ▶ What is ideology? How do we measure it?
 - ► Terrorism?
 - Democracy polity vs. freedom house scores.

Measurement challenge

- Challenge of missing values (non-responses)
- ▶ No data collected / respondents refuse to answer (DKs).
- NAs in our data

```
# Solving with na.rm = TRUE
mean(bushdata$Pol_survMusl)
## [1] NA
mean(bushdata$Pol_survMusl, na.rm = TRUE)
```

[1] 2.067584

▶ Barplot: counts/proportions for categories

```
ggplot(wardata, aes(x=factor(prefer_artillery_dummy))) +
geom_bar(aes(y = (..count..)/sum(..count..)), width = 0.7, fill = "darkblue")
xlab("Support: Artillery option") + ylab("Proportion") +
scale_y_continuous(labels=scales::percent) + ggtitle("Support Artillery optio
theme_classic()
```


▶ Histogram: distribution of numerical variable

▶ Boxplot: Compare single variable distribution

► Scatterplot: Visualize bivariate relationship

▶ Plot time trends (UN Voting data 1946-2012)

Predictions

- Predict with sample mean: using loops.
- Prediction error = actual outcome predicted outcome.
- RMSE: average magnitude of prediction error.
- Correlations:
 - Summary of bivariate relationship.
 - How two factors 'move together' on average.
 - Always relative to mean value.

```
# Voting with US
cor(unvoting$idealpoint, unvoting$PctAgreeUS, use = "pairwise")
```

```
## [1] 0.7498446
```

Predictions

- ▶ The linear model: $Y = \alpha + \beta * X_i + \epsilon$
- Model elements:
 - Intercept (α) : the average value of Y when X is zero.
 - ▶ Slope (β) : the average increase in Y when X increases by 1 unit.
 - ▶ Error/disturbance term (ϵ) : the deviation of an observation from a perfect linear relationship.
- Least squared:
 - How to estimate the regression line.
 - 'Select' $\hat{\alpha}$, $\hat{\beta}$ to minimize SSR.
 - ▶ R syntax: $Im(y \sim x, data = mydata)$

Regression to the mean

- ▶ High (low) observations are followed by low (high) observations.
- ▶ Observations 'regress' towards the average value of the data.

Probability

- Quantify uncertainty: step 1.
- Sample space, events (cards, coin toss)
- ▶ Probability: $P(A) = \frac{Elements(A)}{Elements(\Omega)}$
- ► Conditional probability = $P(A|B) = \frac{P(A\&B)}{P(B)}$
- Monty Hall problem.

Probability

- Random variables: from events to numbers.
- Uncertainty of sample means or sums.
- Probability distributions: Bernoulli (binary), Binomial (discrete).
- ightharpoonup Expectations of r.v. ightharpoonup population value.
- ▶ Variance of r.v. \rightarrow 'spread' of distribution.
- CLT and large samples.

Normal distribution

Uncertainty and estimation

- Estimate based on r.v.s.
- Quantity of interest: point estimate (mean / diff-in-means)
- ▶ How to learn of estimator distribution? simulations. . .
- Calculate SD, or SE in single sample.
- ► Construct 95% Cls how to interpret?

t-distribution

- Small samples.
- Account for DOF.
- ▶ More conservative, why? 'fatter tails'.

Numbers in each rive of the table are values on a Telepholosis with (df) degrees of freedom for selected right sat Ignation-theel probabilities (gl.) and the selected right sat Ignation-theel probabilities (gl.)								
1	0.324920	1.000000	3.077584	6.313752	12.79629	31.82952	63.65674	636.E1K
2	0.258675	0.816497	1.885618	2.519986	4.30265	6.36456	1.12484	31,5891
3	0.279621	0.764892	1.637744	2.353363	3.18245	4.54020	5.84091	12,9240
4	0.272722	0.740697	1.533296	2.131547	2.77545	3.74635	4.50409	8,6163
5	0.267181	0.735682	1,475884	2.015048	2.57258	3.36483	4.00214	6.8688
6	0.254835	0.717558	1.429756	1.543180	2.44551	3.14257	3.72743	5.9588
7	0.263187	0.711142	1,414834	1.894579	2.36462	2.99795	3,49548	5,4029
	0.261921	0.706307	1.396815	1.059540	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.36216	2.82144	3.24984	4,7809
10	0.252115	0.599812	1.372184	1.012451	2.22914	2.76377	3.19927	4,5009
11	0.259556	0.897445	1.383430	1,795885	2.20099	2.71808	3.10581	4,4320
12	0.258033	0.895403	1.356217	1.792290	2.17961	2.58100	1.05454	43170
13	0.258591	0.860829	1.350171	1,770933	2.16037	2.85031	3.01228	4.2208
14	0.258213	0.892417	1.345030	1.351310	2.14429	2.53649	2.97684	4,1405
15	0.257685	0.861197	1,340606	1,753050	2.13145	2.80248	2,94671	4,0728
16	0.257599	0.890132	1.336757	1,715884	2.11991	2.58349	2.90078	4.0150
17	0.257347	0.589795	1.333379	1,739687	2.10982	2.56633	2.89823	3,9651
18	0.257123	0.888364	1.330391	1.734064	2.10092	2.55238	2.82664	3.9216
13	0.258923	0.587921	1.327725	1,729133	2.09002	2.52948	2.86093	3.8834
29	0.258713	0.886954	1.325341	1,724718	2.08596	2.52798	2.84534	3.8495
21	0.258580	0.586352	1.323188	1.720743	2.57961	2.51795	2.83136	3.8153
22	0.258432	0.885805	1.321237	1,717144	2.87387	2.50832	2.81876	3,7921
23	0.258297	0.585306	1.319460	1.713872	2.06866	2.49987	2.80734	3.7576
24	0.258173	0.884850	1.317936	1,710882	2.06390	2.49216	2.79694	3,7454
25	0.256060	0.564430	1.316345	1.700141	2.05054	2.48511	2.78344	3.7251
25	0.255955	0.584043	1.314872	1,395618	2.05553	2.47883	2.77671	3,7066
22	0.255658	0.563665	1.313703	1.702298	2.05183	2.47296	2.77068	3.6096
23	0.255758	0.583353	1.312527	1.391131	2.54841	2.46714	2.78326	3,6729
29	0.255684	0.583044	1.311434	1.699127	2.54523	2.46292	2.75639	3.6584
30	0.255605	0.882758	1.310415	1.687291	2.64227	2.45726	2.75000	3.6460
,	0.253347	0.834490	1.291552	1,644854	1.95996	2.33635	2.57583	3.2905
CI			80%	90%	95%	58%	96%	95.9%

Hypothesis tests

- Estimators: sample means / diff-in-means
- Proof by contradiction.
- Steps for testing:
 - 1. Define null and alternative hyps $(H_0; H_1)$.
 - 2. Select *test statistic* and level of test (α) .
 - 3. Derive reference distribution.
 - 4. Calculate p-values.
 - 5. Make a decision: reject/retain.

Decision rule:

- **Reject null** if p-value is *below* $\alpha = 0.05$
- Otherwise retain the null or fail to reject.

Hypothesis test

Run Two-sample t-test with t.test()

Least squared estimator

- Uncertainty in *least squared* estimator:
 - Generate reference distribution.
 - ► Calculate SEs.
 - Construct 95% Cls.
 - Run hypotheses tests.
 - Results are 'statistically significant', or not.
- Assumptions for regression estimates:
- (1) Exogeneity: mean of ϵ_i does not depend on X_i

$$E(\epsilon_i|X_i) = E(\epsilon_i) = 0$$

(2) Homoskedasticity: variance of ϵ_i does not depend on X_i

$$V(\epsilon_i|X_i) = V(\epsilon_i) = \sigma^2$$

Putting everything together

- Hypotheses:
 - ▶ $H_0: \beta_1 = 0$
 - ▶ $H_a: \beta_1 \neq 0$
- Our estimators: $\hat{\beta}_0, \hat{\beta}_1$
- ► SE and Cls:
 - $\hat{\beta_0} \pm 1.96 * \hat{SE}(\hat{\beta_0})$
 - $\hat{\beta_1} \pm 1.96 * \hat{SE}(\hat{\beta_1})$
- ► Hypotheses test:
 - ► Test statistic: $\frac{\hat{\beta}_1 \hat{\beta}_1^*}{\hat{SE}(\hat{\beta}_1)} \sim N(0,1)$
 - $\hat{\beta}_1$ is statistically significant if p < 0.05.

Rebels and Nukes (2015)

Multivariate regression: account for confounders

```
summary(lm(pursuit ~ rebel + milservice + polity2, data = nukes))
##
## Call:
## lm(formula = pursuit ~ rebel + milservice + polity2, data = nukes)
##
## Residuals:
##
       Min
                 10 Median
                                          Max
## -0.06587 -0.04408 -0.02544 -0.01020 0.99682
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0073899 0.0027782 2.660 0.00783 **
## rebel
              0.0320096 0.0044238 7.236 5.08e-13 ***
## milservice 0.0217914 0.0045106 4.831 1.38e-06 ***
## polity2 0.0004679 0.0002801 1.670 0.09489 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1672 on 7684 degrees of freedom
## (1164 observations deleted due to missingness)
## Multiple R-squared: 0.01596. Adjusted R-squared: 0.01558
## F-statistic: 41.54 on 3 and 7684 DF, p-value: < 2.2e-16
```

OLS coefficient interpretation

► Rebel experience and nuclear technology (2015)

How to use our research?

Applying theories and IR research

Applying IR research in global affairs

- The motivation:
 - We study IR or social science dynamics.
 - Do policymakers use? or even care about this knowledge?

Applying IR research

- ► Main challenge → Time and reading research article.
- Scholars adapt:
 - ▶ Joint forums: *bridging the gap*.
 - Policy-focused writing (Lawfare blog, War on the rocks, Monkey cage).
- Is it working?
- Ask policymakers. . .
- Previous work (2014):
 - Not really.
 - Academic work not aimed to 'close the gap'.

Applying IR research

- ▶ Recent evidence (2021) → replicate 2014 survey.
- ▶ Innovations for better insights:
 - ▶ Diverse sample more areas FP.
 - Both high and low-ranking officials.
 - ▶ Embedded experiment for direct effects.
 - Broader conception for engagement (social media).
- ▶ Sample: 616 officials (Clinton, Bush, Obama administration).

Useful political research?

Research consensus and updating policy views.

Useful political research?

► Frequency of using research into government work.

Useful political research?

▶ How do you use academic research?

Useful researchers

How can researchers contribute the most?

Useful skills...

Useful skills...

Working for the government...

Using political research

- ▶ How can research be useful (Byman & Kroenig 2016)
 - Practical and useful recommendations.
 - Focus clarify complex situations.
 - ▶ Time relevant research.
- Scenarios for applying academic insights:
 - Challenge existing government knowledge shocks (9.11, Soviet collapse).
 - Policy failures (Iraq insurgency outbreak).
 - Missing baseline knowledge (Somalia intervention).

Becoming useful political advisor

- Concrete steps:
 - Networking and personal connections.
 - 'Inject' research into bureaucracy.
 - ► Concise and clear reports in nonacademic outlets.
- Tamper expectations:
 - What is being relevant?
 - Not likely to drastically shape policy.
 - Influence the deliberation process.
- What's in it for policymakers?
 - Offer contrarian arguments to accepted view.

Data science in the real world

- Data analysis → set of tools to understand the world.
- ► The core role of probability.
- Apply complex concepts like repeated sampling.
- Bayesian logic and saving lives.
- Movies:
 - Prediction by the numbers: (Link)
 - ► Tails you win: (Link)